900 resultados para Modified
Resumo:
This paper presents a new approach, predictor-corrector modified barrier approach (PCMBA), to minimize the active losses in power system planning studies. In the PCMBA, the inequality constraints are transformed into equalities by introducing positive auxiliary variables. which are perturbed by the barrier parameter, and treated by the modified barrier method. The first-order necessary conditions of the Lagrangian function are solved by predictor-corrector Newton`s method. The perturbation of the auxiliary variables results in an expansion of the feasible set of the original problem, reaching the limits of the inequality constraints. The feasibility of the proposed approach is demonstrated using various IEEE test systems and a realistic power system of 2256-bus corresponding to the Brazilian South-Southeastern interconnected system. The results show that the utilization of the predictor-corrector method with the pure modified barrier approach accelerates the convergence of the problem in terms of the number of iterations and computational time. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The nature of the molecular structure of plastics makes the properties of such materials markedly temperature dependent. In addition, the continuous increase in the utilization of polymeric materials in many specific applications has demanded knowledge of their physical properties, both during their processing as raw material, as well as over the working temperature range of the final polymer product. Thermal conductivity, thermal diffusivity and specific heat, namely the thermal properties, are the three most important physical properties of a material that are needed for heat transfer calculations. Recently, among several different methods for the determination of the thermal diffusivity and thermal conductivity, transient techniques have become the preferable way for measuring thermal properties of materials. In this work, a very simple and low cost variation of the well known Angstrom method is employed in the experimental determination of the thermal diffusivity of some selected polymers. Cylindrical shaped samples 3 cm diameter and 7 cm high were prepared by cutting from long cylindrical commercial bars. The reproducibility is very good, and the results obtained were checked against results obtained by the hot wire technique, laser flash technique, and when possible, they were also compared with data found in the literature. Thermal conductivity may be then derived from the thermal diffusivity with the knowledge of the bulk density and the specific heat, easily obtained by differential scanning calorimetry. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The objective of the present work is to evaluate the effect of surface modification of cellulose pulp fibres on the mechanical and microstructure of fibre-cement composites. Surface modification of the cellulose pulps was performed with Methacryloxypropyltri-methoxysilane (MPTS) and Aminopropyltri-ethoxysilane (APTS) in an attempt to improve their durability into fibre-cement composites. The surface modification showed significant influence on the microstructure of the composites on the fibre-matrix interface and in the mineralization of the fibre lumen as seen by scanning electron microscopy (SEM) with back-scattered electron (BSE) detector. Accelerated ageing cycles decreased modulus of rupture (MOR) and toughness (TE) of the composites. Composites reinforced with MPTS-modified fibres presented fibres free from cement hydration products, while APTS-modified fibres presented accelerated mineralization. Higher mineralization of the fibres led to higher embrittlement of the composite after accelerated ageing cycles. These observations are therefore very useful for understanding the mechanisms of degradation of fibre-cement composites. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Thermoplastic starch (TPS) was modified with ascorbic acid and citric acid by melt processing of native starch with glycerol as plasticizer in an intensive batch mixer at 160 degrees C. It was found that the molar mass decreases with acid content and processing time causing the reduction in melting temperature (T(m)). As observed by the results of X-ray diffraction and DSC measurements, crystallinity was not changed by the reaction with organic acids. T(m) depression with falling molar mass was interpreted on the basis of the effect of concentration of end-chain units, which act as diluents. FTIR did not show any appreciable change in starch chemical compositions, leading to the conclusion that the main changes observed were produced by the variation in molar mass of the material. We demonstrated that it is possible to decrease melt viscosity without the need for more plasticizer thus avoiding side-effects such as an increase in water affinity or relevant changes in the dynamic mechanical properties. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Several composites based on high-density polyethylene (PE), organically modified montmorillonite (OMMT) and ethylene/methacrylic acid copolymer (EMAA) were prepared by melt compounding. Three Na(+)-montmorillonites (MMT) of different precedence were modified with hexadecyl trimethyl ammonium chloride in order to change their nature from hydrophilic to organophilic. The composites morphology was examined by XRD, SEM and TEM. Mechanical properties were evaluated under static conditions. A slight reinforcement was achieved only when OMMT was added to PE. When EMAA was added to the composites, it negatively interacted with OMMT, diminishing the interlayer distance of OMMT, changing the composite morphology, as if OMMT was not present in composites, and deteriorating their mechanical properties. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, the performance of bis-1, 2-(triethoxysilyl) ethane (BTSE) as a pre-treatment to protect the AA 2024-T3 against corrosion has been investigated by electrochemical impedance spectroscopy (EIS), potentiodynamic polarization curves, and the scanning vibrating electrode technique (SVET). The microstructural and morphological characterizations were carried out via scanning electron microscopy and atomic force microscopy and the chemical composition evaluated using contact angle measurements and X-ray photoelectron spectroscopy (XPS). The electrochemical results showed that the additives improved the anticorrosion properties of the coating. The chemical characterization indicated that additives contribute to an increased degree of surface coverage, as well as to a more complete reticulation. The SVET results evidenced the self-healing abilities of Ce ions. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents the possible alternative removal options for the development of safe drinking water supply in the trace elements affected areas. Arsenic and chromium are two of the most toxic pollutants, introduced into natural waters from a variety of sources and causes various adverse effects on living bodies. Performance of three filter bed method was evaluated in the laboratory. Experiments have been conducted to investigate the sorption of arsenic and chromium on carbon steel and removal of trace elements from drinking water with a household filtration process. The affinity of the arsenic and chromium species for Fe/Fe(3)C (iron/iron carbide) sites is the key factor controlling the removal of the elements. The method is based on the use of powdered block carbon (PBC), powder carbon steel and ball ceramic in the ion-sorption columns as a cleaning process. The PBC modified is a satisfactory and practical sorbent for trace elements (arsenite and chromate) dissolved in water.
Resumo:
In the last few years great efforts have been made in order to find and to develop environmentally friendly substitutes for Cr6+ pre-treatments applied on aluminium alloys used in the aircraft industry. Among the potential substitutes, silane layers have attracted considerable interest from researchers and from the industry. The present work investigates the anti-corrosion behaviour of (bis-1, 2-(triethoxysilyl) ethane (BTSE)) silane layers modified with Ce ions and/or silica nanoparticles applied on Al alloy 2024-T3 substrates. The corrosion behaviour was investigated in 0.1 M NaCl solution via d.c. polarization and electrochemical impedance spectroscopy (EIS). Contact angle measurements and XPS were used to assess information on the chemistry of the silane pre-treated surfaces. The results have shown that the introduction of additives improves the corrosion protection properties of the silane layer. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This paper present the possible alternative options for the remove of trace elements from drinking water supplies in the trace. Arsenic and chromium are two of the most toxic pollutants, introduced into natural waters from a variety of sources and causing various adverse effects on living bodies. The performance of three filter bed methods was evaluated in the laboratory. Experiments were conducted to investigate the sorption of arsenic and chromium on carbon steel and removal of trace elements from drinking water with a household filtration process. The affinity of the arsenic and chromium species for Fe / Fe3C (iron / iron carbide) sites is the key factor controlling the removal of the elements. The method is based on the use of powdered block carbon, powder carbon steel and ceramic spheres in the ion-sorption columns as a cleaning process. The modified powdered block carbon is a satisfactory and economical sorbent for trace elements (arsenite and chromate) dissolved in water due to its low unit cost of about $23 and compatibility with the traditional household filtration system.
Resumo:
This article presents a triple-mode bandpass filter using a modified circular patch resonator. Etched slots in the resonator split the TM(1, 1, 0)(z) degenerate fundamental modes and also perturb the TM(2, 1, 0)(z) mode, approximating their resonant frequencies to form a third-order bandpass filter. A 2.42 GHz centered filter was designed and fabricated. Experimental results showed a fractional bandwidth of 29%, return loss better than 16 dB, insertion loss of 0.5 dB, and good second harmonic band rejection. The filter exhibited a size reduction of 51% compared with a filter using an unperturbed circular patch resonator at the same frequency. (C) 2008 Wiley Periodicals, Inc. Microwave Opt Technol Lett 51: 178-182, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.23950
Resumo:
Inorganic elements analyses of Carapicuiba lake reveal that As, Cr, Pb and Mn are above the recommended drinking water standards. The mean total concentrations of toxic elements in surface water decrease in the order Mn > Cr > Pb > As. At elevated concentrations, toxic elements like Cr can accumulate in soils and enter the food chain, leading to serious health hazards and threatening the long-term sustainability of the local ecosystem. Absorbing materials has often been used to improve water quality. In this investigation three types of material were studied: the natural zeolite (mordenite); synthetic goethite and the powdered block carbon modified. The adsorption of Pb(2+) and Mn(2+) onto natural zeolite as a function of their concentrations was studied at 24 degrees C by varying the metal concentration from 100 to 400 mg L(-1) while keeping all other parameters constant. The low-cost zeolites removed Pb from water without any pretreatment at pH values <6. The maximum adsorption attained was as follows: Pb(2+) 78.7% and Mn(2+) 19.6%. The modified powdered block carbon effectively removed As(V) and Cr(VI) while goethite removed more chromate than arsenate in the pH range 5-6. Results of this study will be used to evaluate the application these materials for the treatment of the Carapicuiba lake`s water.
Resumo:
This work investigates the formation of self-assembled monolayers (SAMs) of cystamine and cystamine-glutaraldehyde on a screen-printed electrode, and the immobilization of the Tc85 protein (from Trypanosoma cruzi) on these monolayers. The methods used included infrared techniques, cyclic voltammetry, and electrochemical impedance spectroscopy. The electrochemical studies were performed at pH 6.9 in 0.1 mol L(-1) phosphate buffer solution containing Fe(CN)(6)(-3/-4) redox species. The surface coverage (0) of the electrode was 0.10 (cystamine), 0.35 (cystamine-glutaraldehyde) and 0.84 (Tc85). Interpretation of electrochemical impedance spectroscopy results was based on a charge-transfer reaction involving Fe(CN)(6)(-3/-4) species at high frequencies, followed by a diffusion through the monolayers at lower frequencies. Estimates of the electrode surface coverage, active site radius, and distance between two adjacent sites assumed that charge transfer occurred at the active sites, and that there was a planar diffusion of redox species to these sites. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Since the computer viruses pose a serious problem to individual and corporative computer systems, a lot of effort has been dedicated to study how to avoid their deleterious actions, trying to create anti-virus programs acting as vaccines in personal computers or in strategic network nodes. Another way to combat viruses propagation is to establish preventive policies based on the whole operation of a system that can be modeled with population models, similar to those that are used in epidemiological studies. Here, a modified version of the SIR (Susceptible-Infected-Removed) model is presented and how its parameters are related to network characteristics is explained. Then, disease-free and endemic equilibrium points are calculated, stability and bifurcation conditions are derived and some numerical simulations are shown. The relations among the model parameters in the several bifurcation conditions allow a network design minimizing viruses risks. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
This work describes the preparation and characterization of biogenic modified silica from rice hull ash and its use as a sorbent of cadmium ions. Thus, an agro-industrial residue has been used to produce a new adsorbent product which is able to remove toxic elements. Mesoporous biogenic silica was obtained by alkaline extraction of sodium silicate by hydrolysis with the sol-gel process, and it was modified with salen using 1,2-dichloroethane as a spacer. The surface area of the silica was measured by nitrogen adsorption/desorption analysis. Surface modification was measured by Fourier transform infrared spectroscopy. The degree of functionalization was obtained by elemental analysis. This work showed that biogenic modified silica can be produced in aqueous media from rice hull ash using a simple method, providing an alternative method for adsorbent preparation. Thermogravimetric analysis showed that the salen-modified silica is stable up to 209 C. The modified silica displays appropriate structural characteristics for an adsorbent. The cylindrical pores, open at both ends, allow free diffusion of cadmium ions to the adsorption sites on the silica surface. The surface modification increases cadmium adsorption on the silica surface 100-fold. The salen-modified silica showed specific adsorption for Cd2+ of 44.52 mg/g SiO2 at cadmium concentration of 100 mg/l.
Resumo:
An important topic in genomic sequence analysis is the identification of protein coding regions. In this context, several coding DNA model-independent methods based on the occurrence of specific patterns of nucleotides at coding regions have been proposed. Nonetheless, these methods have not been completely suitable due to their dependence on an empirically predefined window length required for a local analysis of a DNA region. We introduce a method based on a modified Gabor-wavelet transform (MGWT) for the identification of protein coding regions. This novel transform is tuned to analyze periodic signal components and presents the advantage of being independent of the window length. We compared the performance of the MGWT with other methods by using eukaryote data sets. The results show that MGWT outperforms all assessed model-independent methods with respect to identification accuracy. These results indicate that the source of at least part of the identification errors produced by the previous methods is the fixed working scale. The new method not only avoids this source of errors but also makes a tool available for detailed exploration of the nucleotide occurrence.