1000 resultados para Modelo estructural
Resumo:
Trabajo que estudia el plan global previo a tomar una decisión concreta de programación en el ámbito de la educación de adultos. Antes de entrar en los detalles concretos de la programación, es necesario y fundamental planificar los grandes contextos que condicionan el proceso de aprendizaje: aspectos profesionales, situación personal, características sociales y modelo estructural a adoptar. En definitiva, la realidad en la que convergen todas las variables de la vida misma: necesidades, intereses, posibilidades, características del alumno adulto, todo ello unido a un planteamiento flexible y abierto prescribe el ámbito de actuación del formador, para poder facilitar los aprendizajes del alumno adulto..
Resumo:
Resúmen tomado del autor. Resúmen en castellano y en inglés
Resumo:
Resumen basado en el de la publicación
Resumo:
Resumen basado en el de la publicación
Resumo:
Estudiar las relaciones existentes entre motivación, percepción de la igualdad-discriminación y disciplina con el rendimiento de los alumnos-estudiantes de Educación Física.. Primer estudio: compuesto por un total de 356 alumnos de edades comprendidas entre los 14 y los 16 años de los cursos tercero y cuarto de ESO, pertenecientes a diferentes centros de enseñanza públicos y privados de la Región de Murcia. La del segundo estudio se compone de 1126 sujetos de edades comprendidas entre los 14 y los 16 años, de tercero y cuarto de ESO de centros públicos y privados de la Región de Murcia.. Se comenzó validando las escalas sobre disciplina empleadas en la investigación. En un segundo momento o fase se relacionaron las escalas que miden la percepción del alumno sobre la disciplina del aula y las razones del discente para ser disciplinado en clase de Educación Física con diferentes variables motivacionales y sociodemográficas. Cuestionario de Estrategias para mantener la Disciplina (SSDS) de Papaioannou (1998), basado en la teoría e investigaciones de Hellinson (1985, 1995) Ryan y Connell (1989) y Vallerand y cols. (1992, 1993) que evalúa la percepción que tienen los alumnos de las estrategias usadas por el profesor para mantener la disciplina en clase de Educación Física. Se trata de una escala tipo Likert con un rango de puntuación que oscila de 0 a 10. Cuestionario de Razones para la Disciplina (RDS) que mide las razones de los alumnos para ser disciplinados en clase de Educación Física (Papaioannou, 1998), la mayoría de los ítems del instrumento original fueron adaptados de la escala de Ryan y Connell (1989). Cuestionario de Orientación al Aprendizaje y al Rendimiento en las clases de Educación Física (LAPOPEQ) de Papaioannou, 1994; a partir de los trabajos de Annes y Archer (1988) que mide la percepción de los estudiantes del clima motivacional en las clases de Educación Física. Cuestionario de Percepción del Éxito (POSQ) de Roberts y Balagué, 1991; Roberts, Treasure y Balagué, 1998, en su versión española (Cervelló, Escartí y Balagué, 1999) que mide las orientaciones de los jóvenes en las clases de Educación Física. Cuestionario de Percepción de Igualdad-discriminación en Educación Física (CPIDEF) de Cervelló, Jiménez, Del Villar, Ramos y Santos-Rose (2004) para medir la percepción de igualdad-discriminación por parte de los alumnos en clase de Educación Física.. Análisis factorial de componentes principales con rotación varimax para determinar la estructura factorial de las pruebas y medidas de la consistencia interna de cada uno de los cuestionarios con el fin analizar las propiedades psicométricas de los instrumentos administrados. Análisis factorial confirmatorio para confirmar la estructura factorial de las escalas empleadas y testar la validez de los factores. Análisis de correlación entre las variables estudiadas. Análisis de varianza univariado (ANOVA) para hallar si existen diferencias significativas entre cada una de las variables sociodemográficas establecidas y los diferentes factores que componen las escalas administradas a la muestra de estudio. Análisis de varianza multivariado que determinan las diferencias significativas entre las variables sociodemográficas entre sí y cada uno de los factores que componen las escalas empleadas. Análisis cluster para identificar perfiles motivacionales existentes en la muestra de estudio y análisis de los modelos de ecuaciones estructurales propuestos con los que se pretende testar simultáneamente el modelo estructural y el de medición.. Entre los resultados: 1.Los discentes tienden a adoptar los criterios de éxito que perciben en su profesor al impartir sus clases de Educación Física. 2. Si el interés intrínseco no es alto resulta más decisivo a la hora de determinar la motivación que las orientaciones y viceversa, si el interés intrínseco del discente es alto, será la orientación disposicional la que determine la motivación. 3. Importancia de la labor docente en la creación de ambientes de aprendizaje implicados en la tarea en las clases de Educación Física en los que la valoración de los resultados se realiza en base al esfuerzo y no a la habilidad percibida favoreciendo con ello la no discriminación de los alumnos y, consecuentemente, la igualdad de oportunidades educativas para ambos sexos.. Importancia que los profesores de Educación Física tienen como transmisores de valores y como significativos del comportamiento social de los estudiantes. Necesidad de generar climas motivacionales implicantes a la tarea que favorezcan la orientación disposicional del discente, la percepción de igualdad de trato, la percepción de un profesor que se preocupa por la disciplina y mayores razones de disciplina del alumno en clase de Educación Física..
Resumo:
Resumen basado en el de la publicación
Resumo:
Resumen basado en el de la publicación
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Resumen tomado de la publicaci??n
Resumo:
The performance of a model-based diagnosis system could be affected by several uncertainty sources, such as,model errors,uncertainty in measurements, and disturbances. This uncertainty can be handled by mean of interval models.The aim of this thesis is to propose a methodology for fault detection, isolation and identification based on interval models. The methodology includes some algorithms to obtain in an automatic way the symbolic expression of the residual generators enhancing the structural isolability of the faults, in order to design the fault detection tests. These algorithms are based on the structural model of the system. The stages of fault detection, isolation, and identification are stated as constraint satisfaction problems in continuous domains and solved by means of interval based consistency techniques. The qualitative fault isolation is enhanced by a reasoning in which the signs of the symptoms are derived from analytical redundancy relations or bond graph models of the system. An initial and empirical analysis regarding the differences between interval-based and statistical-based techniques is presented in this thesis. The performance and efficiency of the contributions are illustrated through several application examples, covering different levels of complexity.
Resumo:
Incluye Bibliografía
Resumo:
[ES] El análisis de los factores determinantes de los movimientos migratorios ha despertado el interés de muchos investigadores desde muy antiguo. En este sentido, tanto el objeto de análisis como las herramientas empleadas han evolucionado de forma significativa desde que Ravenstein enunciara en 1885 The Laws of Migration en el marco de lo que hoy conocemos como Modelos Migratorios Espaciales. En este trabajo, se hace un recorrido histórico de la evolución de la investigación en materia de migración, fundamentalmente desde el punto de vista del análisis económico. Además de un análisis descriptivo de las características del inmigrante legal en el archipiélago canario, se presenta un modelo estructural de ecuaciones simultáneas que trata de evaluar la magnitud y signo de los distintos factores por los que los individuos deciden migrar hacia Canarias. Los resultados de la estimación confirman la importancia de las variables económicas como factores determinantes de gran peso en la explicación de la inmigración en Canarias. Este trabajo se inserta en el marco de una investigación más amplia que tiene por objetivo determinar el tamaño de la población óptima en un contexto insular.
Resumo:
Se presenta una técnica de cálculo plástico incremental específica para el modelo estructural lámina plegada, cuya eficiencia se intenta cuantificar en comparación con otros procedimientos de cálculo plástico de estructuras. El complejo problema tridimensional que aparece implícito en este tipo de estructuras se ha reducido a dos análisis monodimensionales más sencillos -1ongitudinal y transversal a los que se han aplicado procedimientos típicos de cálculo plástico de estructuras de barras. Se ha estudiado el modelo en una serie de ejemplos prácticos que han corroborado la validez del mismo, al tiempo que han mostrado las extraordinarias posibilidades de aplicación a situaciones reales de gran interés en la ingeniería.
Resumo:
La aparición de errores o pequeñas diferencias entre la situación ideal prevista y la real durante la ejecución o proyecto de una obra constituye un fenómeno inherente a la limitación humana. Las Normas Oficiales suelen recoger en su articulado tolerancias máximas admisibles para estos errores deducidos, muchas veces, mediante criterios empíricos. Un planteamiento acaso más racional será indicar los valores límites de las imperfecciones de la obra en función del nivel de seguridad adoptado. En este artículo, se estudia desde este punto de vista, la influencia de los errores de ejecución en el valor de la carga crítica de la estructura. Evidentemente, las imperfecciones no deben ser limitadas únicamente por criterios de estabilidad global de la estructura, puesto que existen otras causas de colapso de la misma, que pueden verse afectados más seriamente por las imperfecciones y por consiguiente ser más exigentes en los niveles de las tolerancias máximas. Las imperfecciones que se consideran aquí, corresponden a valores relativamente pequeños producidos por un conjunto de causas simultáneas y por lo tanto son susceptibles de un tratamiento estadístico. Se excluyen de este estudio las equivocaciones o errores groseros cuya descripción matemática mediante métodos probabilistas no es adecuada. Se utilizarán aquí la conjunción de dos técnicas de cálculo -un modelo estructural basado en la teoría de la inestabilidad elástica lineal y un modelo probabilista con distribución gaussiana o uniforme- que se desarrollan de un modo numérico mediante el procedimiento de simulación de Monte-Carlo. Se comprende que la extensión del procedimiento de Monte-Carlo al análisis de otros tipos de modelos estructurales más refinados o bien que consideren otros mecanismos de colapso, así como distintas imperfecciones, es directo a causa del carácter eminentemente numérico del método
Resumo:
El objetivo de esta tesis es estudiar la dinámica de la capa logarítmica de flujos turbulentos de pared. En concreto, proponemos un nuevo modelo estructural utilizando diferentes tipos de estructuras coherentes: sweeps, eyecciones, grupos de vorticidad y streaks. La herramienta utilizada es la simulación numérica directa de canales turbulentos. Desde los primeros trabajos de Theodorsen (1952), las estructuras coherentes han jugado un papel fundamental para entender la organización y dinámica de los flujos turbulentos. A día de hoy, datos procedentes de simulaciones numéricas directas obtenidas en instantes no contiguos permiten estudiar las propiedades fundamentales de las estructuras coherentes tridimensionales desde un punto de vista estadístico. Sin embargo, la dinámica no puede ser entendida en detalle utilizando sólo instantes aislados en el tiempo, sino que es necesario seguir de forma continua las estructuras. Aunque existen algunos estudios sobre la evolución temporal de las estructuras más pequeñas a números de Reynolds moderados, por ejemplo Robinson (1991), todavía no se ha realizado un estudio completo a altos números de Reynolds y para todas las escalas presentes de la capa logarítmica. El objetivo de esta tesis es llevar a cabo dicho análisis. Los problemas más interesantes los encontramos en la región logarítmica, donde residen las cascadas de vorticidad, energía y momento. Existen varios modelos que intentan explicar la organización de los flujos turbulentos en dicha región. Uno de los más extendidos fue propuesto por Adrian et al. (2000) a través de observaciones experimentales y considerando como elemento fundamental paquetes de vórtices con forma de horquilla que actúan de forma cooperativa para generar rampas de bajo momento. Un modelo alternativo fué ideado por del Álamo & Jiménez (2006) utilizando datos numéricos. Basado también en grupos de vorticidad, planteaba un escenario mucho más desorganizado y con estructuras sin forma de horquilla. Aunque los dos modelos son cinemáticamente similares, no lo son desde el punto de vista dinámico, en concreto en lo que se refiere a la importancia que juega la pared en la creación y vida de las estructuras. Otro punto importante aún sin resolver se refiere al modelo de cascada turbulenta propuesto por Kolmogorov (1941b), y su relación con estructuras coherentes medibles en el flujo. Para dar respuesta a las preguntas anteriores, hemos desarrollado un nuevo método que permite seguir estructuras coherentes en el tiempo y lo hemos aplicado a simulaciones numéricas de canales turbulentos con números de Reynolds lo suficientemente altos como para tener un rango de escalas no trivial y con dominios computacionales lo suficientemente grandes como para representar de forma correcta la dinámica de la capa logarítmica. Nuestros esfuerzos se han desarrollado en cuatro pasos. En primer lugar, hemos realizado una campaña de simulaciones numéricas directas a diferentes números de Reynolds y tamaños de cajas para evaluar el efecto del dominio computacional en las estadísticas de primer orden y el espectro. A partir de los resultados obtenidos, hemos concluido que simulaciones con cajas de longitud 2vr y ancho vr veces la semi-altura del canal son lo suficientemente grandes para reproducir correctamente las interacciones entre estructuras coherentes de la capa logarítmica y el resto de escalas. Estas simulaciones son utilizadas como punto de partida en los siguientes análisis. En segundo lugar, las estructuras coherentes correspondientes a regiones con esfuerzos de Reynolds tangenciales intensos (Qs) en un canal turbulento han sido estudiadas extendiendo a tres dimensiones el análisis de cuadrantes, con especial énfasis en la capa logarítmica y la región exterior. Las estructuras coherentes han sido identificadas como regiones contiguas del espacio donde los esfuerzos de Reynolds tangenciales son más intensos que un cierto nivel. Los resultados muestran que los Qs separados de la pared están orientados de forma isótropa y su contribución neta al esfuerzo de Reynolds medio es nula. La mayor contribución la realiza una familia de estructuras de mayor tamaño y autosemejantes cuya parte inferior está muy cerca de la pared (ligada a la pared), con una geometría compleja y dimensión fractal « 2. Estas estructuras tienen una forma similar a una ‘esponja de placas’, en comparación con los grupos de vorticidad que tienen forma de ‘esponja de cuerdas’. Aunque el número de objetos decae al alejarnos de la pared, la fracción de esfuerzos de Reynolds que contienen es independiente de su altura, y gran parte reside en unas pocas estructuras que se extienden más allá del centro del canal, como en las grandes estructuras propuestas por otros autores. Las estructuras dominantes en la capa logarítmica son parejas de sweeps y eyecciones uno al lado del otro y con grupos de vorticidad asociados que comparten las dimensiones y esfuerzos con los remolinos ligados a la pared propuestos por Townsend. En tercer lugar, hemos estudiado la evolución temporal de Qs y grupos de vorticidad usando las simulaciones numéricas directas presentadas anteriormente hasta números de Reynolds ReT = 4200 (Reynolds de fricción). Las estructuras fueron identificadas siguiendo el proceso descrito en el párrafo anterior y después seguidas en el tiempo. A través de la interseción geométrica de estructuras pertenecientes a instantes de tiempo contiguos, hemos creado gratos de conexiones temporales entre todos los objetos y, a partir de ahí, definido ramas primarias y secundarias, de tal forma que cada rama representa la evolución temporal de una estructura coherente. Una vez que las evoluciones están adecuadamente organizadas, proporcionan toda la información necesaria para caracterizar la historia de las estructuras desde su nacimiento hasta su muerte. Los resultados muestran que las estructuras nacen a todas las distancias de la pared, pero con mayor probabilidad cerca de ella, donde la cortadura es más intensa. La mayoría mantienen tamaños pequeños y no viven mucho tiempo, sin embargo, existe una familia de estructuras que crecen lo suficiente como para ligarse a la pared y extenderse a lo largo de la capa logarítmica convirtiéndose en las estructuras observas anteriormente y descritas por Townsend. Estas estructuras son geométricamente autosemejantes con tiempos de vida proporcionales a su tamaño. La mayoría alcanzan tamaños por encima de la escala de Corrsin, y por ello, su dinámica está controlada por la cortadura media. Los resultados también muestran que las eyecciones se alejan de la pared con velocidad media uT (velocidad de fricción) y su base se liga a la pared muy rápidamente al inicio de sus vidas. Por el contrario, los sweeps se mueven hacia la pared con velocidad -uT y se ligan a ella más tarde. En ambos casos, los objetos permanecen ligados a la pared durante 2/3 de sus vidas. En la dirección de la corriente, las estructuras se desplazan a velocidades cercanas a la convección media del flujo y son deformadas por la cortadura. Finalmente, hemos interpretado la cascada turbulenta, no sólo como una forma conceptual de organizar el flujo, sino como un proceso físico en el cual las estructuras coherentes se unen y se rompen. El volumen de una estructura cambia de forma suave, cuando no se une ni rompe, o lo hace de forma repentina en caso contrario. Los procesos de unión y rotura pueden entenderse como una cascada directa (roturas) o inversa (uniones), siguiendo el concepto de cascada de remolinos ideado por Richardson (1920) y Obukhov (1941). El análisis de los datos muestra que las estructuras con tamaños menores a 30η (unidades de Kolmogorov) nunca se unen ni rompen, es decir, no experimentan el proceso de cascada. Por el contrario, aquellas mayores a 100η siempre se rompen o unen al menos una vez en su vida. En estos casos, el volumen total ganado y perdido es una fracción importante del volumen medio de la estructura implicada, con una tendencia ligeramente mayor a romperse (cascada directa) que a unirse (cascade inversa). La mayor parte de interacciones entre ramas se debe a roturas o uniones de fragmentos muy pequeños en la escala de Kolmogorov con estructuras más grandes, aunque el efecto de fragmentos de mayor tamaño no es despreciable. También hemos encontrado que las roturas tienen a ocurrir al final de la vida de la estructura y las uniones al principio. Aunque los resultados para la cascada directa e inversa no son idénticos, son muy simétricos, lo que sugiere un alto grado de reversibilidad en el proceso de cascada. ABSTRACT The purpose of the present thesis is to study the dynamics of the logarithmic layer of wall-bounded turbulent flows. Specifically, to propose a new structural model based on four different coherent structures: sweeps, ejections, clusters of vortices and velocity streaks. The tool used is the direct numerical simulation of time-resolved turbulent channels. Since the first work by Theodorsen (1952), coherent structures have played an important role in the understanding of turbulence organization and its dynamics. Nowadays, data from individual snapshots of direct numerical simulations allow to study the threedimensional statistical properties of those objects, but their dynamics can only be fully understood by tracking them in time. Although the temporal evolution has already been studied for small structures at moderate Reynolds numbers, e.g., Robinson (1991), a temporal analysis of three-dimensional structures spanning from the smallest to the largest scales across the logarithmic layer has yet to be performed and is the goal of the present thesis. The most interesting problems lie in the logarithmic region, which is the seat of cascades of vorticity, energy, and momentum. Different models involving coherent structures have been proposed to represent the organization of wall-bounded turbulent flows in the logarithmic layer. One of the most extended ones was conceived by Adrian et al. (2000) and built on packets of hairpins that grow from the wall and work cooperatively to gen- ´ erate low-momentum ramps. A different view was presented by del Alamo & Jim´enez (2006), who extracted coherent vortical structures from DNSs and proposed a less organized scenario. Although the two models are kinematically fairly similar, they have important dynamical differences, mostly regarding the relevance of the wall. Another open question is whether such a model can be used to explain the cascade process proposed by Kolmogorov (1941b) in terms of coherent structures. The challenge would be to identify coherent structures undergoing a turbulent cascade that can be quantified. To gain a better insight into the previous questions, we have developed a novel method to track coherent structures in time, and used it to characterize the temporal evolutions of eddies in turbulent channels with Reynolds numbers high enough to include a non-trivial range of length scales, and computational domains sufficiently long and wide to reproduce correctly the dynamics of the logarithmic layer. Our efforts have followed four steps. First, we have conducted a campaign of direct numerical simulations of turbulent channels at different Reynolds numbers and box sizes, and assessed the effect of the computational domain in the one-point statistics and spectra. From the results, we have concluded that computational domains with streamwise and spanwise sizes 2vr and vr times the half-height of the channel, respectively, are large enough to accurately capture the dynamical interactions between structures in the logarithmic layer and the rest of the scales. These simulations are used in the subsequent chapters. Second, the three-dimensional structures of intense tangential Reynolds stress in plane turbulent channels (Qs) have been studied by extending the classical quadrant analysis to three dimensions, with emphasis on the logarithmic and outer layers. The eddies are identified as connected regions of intense tangential Reynolds stress. Qs are then classified according to their streamwise and wall-normal fluctuating velocities as inward interactions, outward interactions, sweeps and ejections. It is found that wall-detached Qs are isotropically oriented background stress fluctuations, common to most turbulent flows, and do not contribute to the mean stress. Most of the stress is carried by a selfsimilar family of larger wall-attached Qs, increasingly complex away from the wall, with fractal dimensions « 2. They have shapes similar to ‘sponges of flakes’, while vortex clusters resemble ‘sponges of strings’. Although their number decays away from the wall, the fraction of the stress that they carry is independent of their heights, and a substantial part resides in a few objects extending beyond the centerline, reminiscent of the very large scale motions of several authors. The predominant logarithmic-layer structures are sideby- side pairs of sweeps and ejections, with an associated vortex cluster, and dimensions and stresses similar to Townsend’s conjectured wall-attached eddies. Third, the temporal evolution of Qs and vortex clusters are studied using time-resolved DNS data up to ReT = 4200 (friction Reynolds number). The eddies are identified following the procedure presented above, and then tracked in time. From the geometric intersection of structures in consecutive fields, we have built temporal connection graphs of all the objects, and defined main and secondary branches in a way that each branch represents the temporal evolution of one coherent structure. Once these evolutions are properly organized, they provide the necessary information to characterize eddies from birth to death. The results show that the eddies are born at all distances from the wall, although with higher probability near it, where the shear is strongest. Most of them stay small and do not last for long times. However, there is a family of eddies that become large enough to attach to the wall while they reach into the logarithmic layer, and become the wall-attached structures previously observed in instantaneous flow fields. They are geometrically self-similar, with sizes and lifetimes proportional to their distance from the wall. Most of them achieve lengths well above the Corrsin’ scale, and hence, their dynamics are controlled by the mean shear. Eddies associated with ejections move away from the wall with an average velocity uT (friction velocity), and their base attaches very fast at the beginning of their lives. Conversely, sweeps move towards the wall at -uT, and attach later. In both cases, they remain attached for 2/3 of their lives. In the streamwise direction, eddies are advected and deformed by the local mean velocity. Finally, we interpret the turbulent cascade not only as a way to conceptualize the flow, but as an actual physical process in which coherent structures merge and split. The volume of an eddy can change either smoothly, when they are not merging or splitting, or through sudden changes. The processes of merging and splitting can be thought of as a direct (when splitting) or an inverse (when merging) cascade, following the ideas envisioned by Richardson (1920) and Obukhov (1941). It is observed that there is a minimum length of 30η (Kolmogorov units) above which mergers and splits begin to be important. Moreover, all eddies above 100η split and merge at least once in their lives. In those cases, the total volume gained and lost is a substantial fraction of the average volume of the structure involved, with slightly more splits (direct cascade) than mergers. Most branch interactions are found to be the shedding or absorption of Kolmogorov-scale fragments by larger structures, but more balanced splits or mergers spanning a wide range of scales are also found to be important. The results show that splits are more probable at the end of the life of the eddy, while mergers take place at the beginning of the life. Although the results for the direct and the inverse cascades are not identical, they are found to be very symmetric, which suggests a high degree of reversibility of the cascade process.