981 resultados para Modèle abélien Higgs


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the possible effects of CP violation in the Higgs sector on t (t) over bar production at a gammagamma collider. These studies are performed in a model-independent way in terms of six form factors {R(S-gamma), J(S-gamma), R(P-gamma), J(P-gamma), S-t, P-t} which parametrize the CP mixing in the Higgs sector, and a strategy for their determination is developed. We observe that the angular distribution of the decay lepton from t/(t) over bar produced in this process is independent of any CP violation in the tbW vertex and hence best suited for studying CP mixing in the Higgs sector. Analytical expressions are obtained for the angular distribution of leptons in the c.m. frame of the two colliding photons for a general polarization state of the incoming photons. We construct combined asymmetries in the initial state lepton (photon) polarization and the final state lepton charge. They involve CP even (x's) and odd (y's) combinations of the mixing parameters. We study limits up to which the values of x and y, with only two of them allowed to vary at a time, can be probed by measurements of these asymmetries, using circularly polarized photons. We use the numerical values of the asymmetries predicted by various models to discriminate among them. We show that this method can be sensitive to the loop-induced CP violation in the Higgs sector in the minimal supersymmetric standard model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine the effect of a general HZZ coupling through a study of the Higgs decay to leptons via Z bosons at the LHC. We discuss various methods for placing limits on additional couplings, including measurement of the partial width, threshold scans, and asymmetries constructed from angular observables. We find that only the asymmetries provide a definitive test of additional couplings. We further estimate the significances they provide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Report of the Higgs working group for the Workshop "Physics at TeV Colliders", Les Houches, France 8-18 June 1999. It contains 6 separate sections: 1. Measuring Higgs boson couplings at the LHC. 2. Higgs boson production at hadron colliders at NLO. 3. Signatures of Heavy Charged Higgs Bosons at the LHC. 4. Light stop effects and Higgs boson searches at the LHC. 5. Double Higgs production at TeV Colliders in the MSSM. 6. Programs and Tools for Higgs Bosons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the context of the standard model with a fourth generation, we explore the allowed mass spectra in the fourth-generation quark and lepton sectors as functions of the Higgs mass. Using the constraints from unitarity and oblique parameters, we show that a heavy Higgs allows large mass splittings in these sectors, opening up new decay channels involving W emission. Assuming that the hints for a light Higgs do not yet constitute an evidence, we work in a scenario where a heavy Higgs is viable. A Higgs heavier than similar to 800 GeV would in fact necessitate either a heavy quark decay channel t' -> b'W/b' -> t'W or a heavy lepton decay channel tau' -> nu'W as long as the mixing between the third and fourth generations is small. This mixing tends to suppress the mass splittings and hence the W-emission channels. The possibility of the W-emission channel could substantially change the search strategies of fourth-generation fermions at the LHC and impact the currently reported mass limits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the feasibility of the measurement of Higgs pair creation at a photon linear collider. From the sensitivity to the anomalous self-coupling of the Higgs boson, the optimum gamma gamma collision energy was found to be around 270 GeV for a Higgs mass of 120 GeV/c(2). We found that large backgrounds such as gamma gamma -> W+W-, ZZ, and b (b) over barb (b) over bar can be suppressed if correct assignment of tracks to parent partons is achieved and Higgs pair events can be observed with a statistical significance of similar to 5 sigma by operating the photon linear collider for 5 years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the expectations for the light Higgs signal in the minimal supersymmetric standard model in different search channels at the LHC. After taking into account dark matter and flavor constraints in the minimal supersymmetric standard model with 11 free parameters as well as LHC results on the Higgs sector, we show that the light Higgs signal in the gamma channel is expected to be at most at the level of the standard model Higgs, while the h -> b (b) over bar from W fusion and/or the h -> tau(tau) over bar can be enhanced. For the main discovery mode, we show that a strong suppression of the signal occurs in two different cases: low M-A or large invisible width. The former is however strongly constrained by the recent LHC results. A more modest suppression is associated with the effect of light supersymmetric particles. Looking for such modification of the Higgs properties and searching directly for supersymmetric partners and pseudoscalar Higgs offer two complementary probes of supersymmetry at the LHC.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We interpret the recent discovery of a 125 GeV Higgs-like state in the context of a two-Higgs-doublet model with a heavy fourth sequential generation of fermions, in which one Higgs doublet couples only to the fourth-generation fermions, while the second doublet couples to the lighter fermions of the first three families. This model is designed to accommodate the apparent heaviness of the fourth-generation fermions and to effectively address the low-energy phenomenology of a dynamical electroweak-symmetry-breaking scenario. The physical Higgs states of the model are, therefore, viewed as composites primarily of the fourth-generation fermions. We find that the lightest Higgs, h, is a good candidate for the recently discovered 125 GeV spin-zero particle, when tan beta similar to O(1), for typical fourth-generation fermion masses of M-4G = 400-600 GeV, and with a large t-t' mixing in the right-handed quark sector. This, in turn, leads to BR(t' -> th) similar to O(1), which drastically changes the t' decay pattern. We also find that, based on the current Higgs data, this two-Higgs-doublet model generically predicts an enhanced production rate (compared to the Standard Model) in the pp -> h -> tau tau channel, and reduced rates in the VV -> h -> gamma gamma and p (p) over bar /pp -> V -> hV -> Vbb channels. Finally, the heavier CP-even Higgs is excluded by the current data up to m(H) similar to 500 GeV, while the pseudoscalar state, A, can be as light as 130 GeV. These heavier Higgs states and the expected deviations from the Standard Model din some of the Higgs production channels can be further excluded or discovered with more data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We revisit the issue of considering stochasticity of Grassmannian coordinates in N = 1 superspace, which was analyzed previously by Kobakhidze et al. In this stochastic supersymmetry (SUSY) framework, the soft SUSY breaking terms of the minimal supersymmetric Standard Model (MSSM) such as the bilinear Higgs mixing, trilinear coupling, as well as the gaugino mass parameters are all proportional to a single mass parameter xi, a measure of supersymmetry breaking arising out of stochasticity. While a nonvanishing trilinear coupling at the high scale is a natural outcome of the framework, a favorable signature for obtaining the lighter Higgs boson mass m(h) at 125 GeV, the model produces tachyonic sleptons or staus turning to be too light. The previous analyses took Lambda, the scale at which input parameters are given, to be larger than the gauge coupling unification scale M-G in order to generate acceptable scalar masses radiatively at the electroweak scale. Still, this was inadequate for obtaining m(h) at 125 GeV. We find that Higgs at 125 GeV is highly achievable, provided we are ready to accommodate a nonvanishing scalar mass soft SUSY breaking term similar to what is done in minimal anomaly mediated SUSY breaking (AMSB) in contrast to a pure AMSB setup. Thus, the model can easily accommodate Higgs data, LHC limits of squark masses, WMAP data for dark matter relic density, flavor physics constraints, and XENON100 data. In contrast to the previous analyses, we consider Lambda = M-G, thus avoiding any ambiguities of a post-grand unified theory physics. The idea of stochastic superspace can easily be generalized to various scenarios beyond the MSSM. DOI: 10.1103/PhysRevD.87.035022

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recently discovered scalar resonance at the Large Hadron Collider is now almost confirmed to be a Higgs boson, whose CP properties are yet to be established. At the International Linear Collider with and without polarized beams, it may be possible to probe these properties at high precision. In this work, we study the possibility of probing departures from the pure CP-even case, by using the decay distributions in the process e(+)e(-) -> t (t) over bar Phi, with Phi mainly decaying into a b (b) over bar pair. We have compared the case of a minimal extension of the Standard Model case (model I) with an additional pseudoscalar degree of freedom, with a more realistic case namely the CP-violating two-Higgs doublet model (model II) that permits a more general description of the couplings. We have considered the International Linear Collider with root s = 800 GeV and integrated luminosity of 300 fb(-1). Our main findings are that even in the case of small departures from the CP-even case, the decay distributions are sensitive to the presence of a CP-odd component in model II, while it is difficult to probe these departures in model I unless the pseudoscalar component is very large. Noting that the proposed degrees of beam polarization increase the statistics, the process demonstrates the effective role of beam polarization in studies beyond the Standard Model. Further, our study shows that an indefinite CP Higgs would be a sensitive laboratory to physics beyond the Standard Model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Large Hadron Collider has recently discovered a Higgs-like particle having a mass around 125 GeVand also indicated that there is an enhancement in the Higgs to diphoton decay rate as compared to that in the standard model. We have studied implications of these discoveries in the bilinear R-parity violating supersymmetric model, whose main motivation is to explain the nonzero masses for neutrinos. The R-parity violating parameters in this model are epsilon and b(epsilon), and these parameters determine the scale of neutrino masses. If the enhancement in the Higgs to diphoton decay rate is true, then we have found epsilon greater than or similar to 0.01 GeV and b epsilon similar to 1 GeV2 in order to be compatible with the neutrino oscillation data. Also, in the above mentioned analysis, we can determine the soft masses of sleptons (m(L)) and CP-odd Higgs boson mass (mA). We have estimated that m(L) greater than or similar to 300 GeV and m(A) greater than or similar to 700 GeV. We have also commented on the allowed values of epsilon and b(epsilon), in case there is no enhancement in the Higgs to diphoton decay rate. Finally, we present a model to explain the smallness of epsilon and b(epsilon).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider supersymmetric models in which the lightest Higgs scalar can decay invisibly consistent with the constraints on the 126 GeV state discovered at the CERN LHC. We consider the invisible decay in the minimal supersymmetric standard model (MSSM), as well its extension containing an additional chiral singlet superfield, the so-called next-to-minimal or nonminimal supersymmetric standard model (NMSSM). We consider the case of MSSM with both universal as well as nonuniversal gaugino masses at the grand unified scale, and find that only an E-6 grand unified model with unnaturally large representation can give rise to sufficiently light neutralinos which can possibly lead to the invisible decay h(0) -> (chi) over tilde (0)(1)(chi) over tilde (0)(1). Following this, we consider the case of NMSSM in detail, where we also find that it is not possible to have the invisible decay of the lightest Higgs scalar with universal gaugino masses at the grand unified scale. We delineate the regions of the NMSSM parameter space where it is possible for the lightest Higgs boson to have a mass of about 126 GeV, and then concentrate on the region where this Higgs can decay into light neutralinos, with the soft gaugino masses M-1 and M-2 as two independent parameters, unconstrained by grand unification. We also consider, simultaneously, the other important invisible Higgs decay channel in the NMSSM, namely the decay into the lightest CP-odd scalars, h(1) -> a(1)a(1), which is studied in detail. With the invisible Higgs branching ratio being constrained by the present LHC results, we find that mu(eff) < 170 GeV and M-1 < 80 GeV are disfavored in NMSSM for fixed values of the other input parameters. The dependence of our results on the parameters of NMSSM is discussed in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Determining the spin and the parity quantum numbers of the recently discovered Higgs-like boson at the LHC is a matter of great importance. In this Letter, we consider the possibility of using the kinematics of the tagging jets in Higgs production via the vector boson fusion (VBF) process to test the tensor structure of the Higgs-vector boson (HVV) interaction and to determine the spin and CP properties of the observed resonance. We show that an anomalous HVV vertex, in particular its explicit momentum dependence, drastically affects the rapidity between the two scattered quarks and their transverse momenta and, hence, the acceptance of the kinematical cuts that allow to select the VBF topology. The sensitivity of these observables to different spin-parity assignments, including the dependence on the LHC center of mass energy, are evaluated. In addition, we show that in associated Higgs production with a vector boson some kinematical variables, such as the invariant mass of the system and the transverse momenta of the two bosons and their separation in rapidity, are also sensitive to the spin-parity assignments of the Higgs-like boson.