927 resultados para Mitochondrial-dna Sequences
Resumo:
With 210 genera and 2010 species, Cyprinidae is the largest freshwater fish family in the world. Several papers, based on morphological and molecular data, have been published and have led to some solid conclusions, such as the close relationships between North American phoxinins and European leuciscins. However, the relationships among major subgroups of this family are still not well resolved, especially for those East Asian groups. In the present paper, the mitochondrial DNA (mtDNA) control region, 896-956 base pairs, of 17 representative species of East Asian cyprinids was sequenced and compared with those of 21 other cyprinids to study their phylogenetic relationships. After alignment, there were 1051 sites. The comparison between pairwise substitutions and HKY distances showed that the mtDNA control region was suitable for phylogenetic study. Phylogenetic analysis indicated that there are two principal lineages in Cyprinidae: Cyprinine and Leuciscine. In Cyprinine, the relationships could be a basal Labeoinae, an intermediate Cyprininae, and a diversified Barbinae (including Schizothroaxinae). In Leuciscine, Rasborinae is at the basal position; Gobioninae and Leuciscinae are sister groups; the East Asian cultrin-xenocyprinin taxa form a large monophyletic group with some small affiliated groups; and the positions of Acheilognathinae and Tincinae are still uncertain.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
•Relationships of Cheirodontinae based on a broad taxonomic sample.•Results reject the monophyly of Cheirodontinae as previously conceived.•Exclusion of Amazonspinther and Spintherobolus from the subfamily Cheirodontinae.•The removal of Leptagoniates pi of the genus Leptagoniates and inclusion in Cheirodontinae.•Division of Cheirodontinae in three newly defined monophyletic tribes. Characidae is the most species-rich family of freshwater fishes in the order Characiformes, with more than 1000 valid species that correspond to approximately 55% of the order. Few hypotheses about the composition and internal relationships within this family are available and most fail to reach an agreement. Among Characidae, Cheirodontinae is an emblematic group that includes 18 genera (1 fossil) and approximately 60 described species distributed throughout the Neotropical region. The taxonomic and systematic history of Cheirodontinae is complex, and only two hypotheses about the internal relationships in this subfamily have been reported to date. In the present study, we test the composition and relationships of fishes assigned to Cheirodontinae based on a broad taxonomic sample that also includes some characid incertae sedis taxa that were previously considered to be part of Cheirodontinae. We present phylogenetic analyses of a large molecular dataset of mitochondrial and nuclear DNA sequences. Our results reject the monophyly of Cheirodontinae as previously conceived, as well as the tribes Cheirodontini and Compsurini, and the genera Cheirodon, Compsura, Leptagoniates, Macropsobrycon, Odontostilbe, and Serrapinnus. On the basis of these results we propose: (1) the exclusion of Amazonspinther and Spintherobolus from the subfamily Cheirodontinae since they are the sister-group of all remaining Characidae; (2) the removal of Macropsobrycon xinguensis of the genus Macropsobrycon; (3) the removal of Leptagoniates pi of the genus Leptagoniates; (4) the inclusion of Leptagoniates pi in the subfamily Cheirodontinae; (5) the removal of Cheirodon stenodon of the genus Cheirodon and its inclusion in the subfamily Cheirodontinae under a new genus name; (6) the need to revise the polyphyletic genera Compsura, Odontostilbe, and Serrapinnus; and (7) the division of Cheirodontinae in three newly defined monophyletic tribes: Cheirodontini, Compsurini, and Pseudocheirodontini. Our results suggest that our knowledge about the largest Neotropical fish family, Characidae, still is incipient. © 2013 Elsevier Inc..
Resumo:
Transpositions of mtDNA sequences to the nuclear genome have been documented in a wide variety of individual taxa, but little is known about their taxonomic frequency or patterns of variation. We provide evidence of nuclear sequences homologous to the mtDNA control region in seven species of diving ducks (tribe Aythyini). Phylogenetic analysis places each nuclear sequence as a close relative of the mtDNA haplotypes of the specie(s) in which it occurs, indicating that they derive from six independent transposition events, all occurring within the last ≈1.5 million years. Relative-rate tests and comparison of intraspecific variation in nuclear and mtDNA sequences confirm the expectation of a greatly reduced rate of evolution in the nuclear copies. By representing mtDNA haplotypes from ancestral populations, nuclear insertions may be valuable in some phylogenetic analyses, but they also confound the accurate determination of mtDNA sequences. In particular, our data suggest that the presumably nonfunctional but more slowly evolving nuclear sequences often will not be identifiable by changes incompatible with function and may be preferentially amplified by PCR primers based on mtDNA sequences from related taxa.
Resumo:
We undertook analyses of mitochondrial DNA gene sequences and echolocation calls to resolve phylogenetic relationships among the related bat taxa Rhinolophus pusillus (sampled across China), R. monoceros (Taiwan), R. cornutus (main islands of Japan), and R. c. pumilus (Okinawa, Japan), Phylogenetic trees and genetic divergence analyses were constructed by combining new complete mitochondrial cytochrome-b gene sequences and partial mitochondrial control region sequences with published sequences. Our work showed that these 4 taxa formed monophyletic groups in the phylogenetic tree. However, low levels of sequence divergence among the taxa, together with similarities in body size and overlapping echolocation call frequencies, point to a lack of taxonomic distinctiveness. We therefore suggest that these taxa are better considered as geographical subspecies rather than distinct species, although this should not diminish the conservation importance of these island populations, which are important evolutionarily significant units. Based on our findings, we suggest that the similarities in body size and echolocation call frequency in these rhinolophids result from their recent common ancestry, whereas similarities in body size and call frequency with R. hipposideros of Europe are the result of convergent evolution.
Resumo:
As part of a study of genetic variation in the Vietnamese strains of the common carp (Cyprinus carpio L.) using direct DNA sequencing of mitochondrial control and ATPase6/8 gene regions, samples from a number of other countries were analyzed for comparison. Results show that the levels of sequence divergence in common carp is low on a global scale, with the Asian carp having the highest diversity while Koi and European carp are invariant. A genealogical analysis supports a close relationship among Vietnamese, Koi, Chinese Color and, to a lesser extent, European carp. Koi carp appear to have originated from a strain of Chinese red carp. There is considerable scope to extend this research through the analysis of additional samples of carp from around the world, especially from China, in order to generate a comprehensive global genealogy of common carp strains.
Resumo:
Molecular-based approaches for shark species identification have been driven largely by issues specific to the fishery. In an effort to establish a more comprehensive identification data set, we investigated DNA sequence variation of a 1.4-kb region from the mitochondrial genome covering partial sequences from the 12S rDNA, 16S rDNA, and the complete valine tRNA from 35 shark species from the Atlantic fishery. Generally, within-species variability was low in relation to interspecific divergence because species haloptypes formed monophyletic groups. Phylogenetic analyses resolved ordinal relationships among Carcharhiniformes and Lamniformes, and revealed support for the families Sphyrnidae and Triakidae (within Carcharhiniformes) and Lamnidae and Alopidae (within Lamniformes). The combination of limited intraspecific variability and sufficient between-species divergence indicates that this locus is suitable for species identification.
Resumo:
mtDNA genotypes of six domestic horses (three adult short horses whose heights are under 1 m and three common domestic horses) from a small region of 15 km(2) in Malipo county of Yunnan province of China were investigated by the technique of restriction fragment length polymorphism (RFLP) with restriction endonucleases which recognize 6-bp sequences. An average of fragments for an individual was obtained. Unlike other domestic animals, this population of horses exhibits high mtDNA genetic diversity. Each of the six horses has a specific mtDNA genotype showing a pattern of multiple maternal origins, as suggested by fossil and literature records. We think the population of horses is an amazing seed-resource pool of horses and hence deserves to be paid more attention from the view of conservation genetics. However it is also remarkable that we did not find any typical mtDNA genetic markers which would discriminate between short horses and common domestic horses.
Resumo:
To expand the feasibility of applying simple, efficient, non-invasive DNA preparation methods using samples that can be obtained from giant pandas living in the wild, we investigated the use of scent markings and fecal samples. Giant panda-specific oligonucleotide primers were used to amplify a portion of the mitochondrial DNA control region as well as a portion of the mitochondrial DNA cytochrome b gene and tRNA(Thr) gene region. A 196 base pair (bp) fragment in the control region and a 449 bp fragment in the cytochrome b gene and tRNA(Thr) gene were successfully amplified. Sequencing of polymerase chain reaction (PCR) products demonstrated that the two fragments are giant panda sequences. Furthermore, under simulated field conditions we found that DNA can be extracted from fecal samples aged as long as 3 months. Our results suggest that the scent mark and fecal samples are simple, efficient, and easily prepared DNA sources. (C) 1998 Wiley-Liss, Inc.
Resumo:
Mitochondrial DNA (mtDNA) hypervariable segment I sequences (HVSI, 471 bp) of the control region and partial cytochrome b sequences (Cytb, 403 bp) were analyzed in three tentative species of the genus Mystacoleucus in China (M. chilopterus, M. marginatus, and M. lepturus). Not more than two mutations were found in both the HVSI and Cytb fragments among the samples from M. chilopterus and M. marginatus. However, M. lepturus differed from each of them by at least 25 mutations in Cytb and 51 mutations in HVSI. Moreover, the HVSI sequence variation within M. lepturus was larger than that between M. chilopterus and M. marginatus. Given that M. chilopterus and M. marginatus are very similar in morphology, it is reasonable to consider M. chilopterus and M. marginatus as conspecific. Our results also suggest a recent radiation of M. marginatus from downstream to upstream of the Lancangjiang (Mekong) River.
Resumo:
To study the mitochondrial DNA (mtDNA) polymorphisms in a total of 232 individuals from five ethnic populations (Daur, n=45; Ewenki, n=47; Korean, n=48; Mongolian, n=48; Oroqen, n=44) in northern China, we analyzed the control region sequences and typed for a number of characteristic mutations in coding regions (especially the region 14576-16047), by direct sequencing or restriction-fragment-length-polymorphism (RFLP) analysis. With the exception of 14 individuals belonging to the European-specific haplogroups R2, H, J, and T, the mtDNAs considered could be assigned into the East Asian-specific haplogroups described recently. The polymorphisms in cytochrome b sequence were found to be very informative for defining or supporting the haplogroups status of East Asian mtDNAs in addition to the reported regions 10171-10659 and 14055-14590 in our previous study. The haplogroup distribution frequencies varied in the five ethnic populations, but in general they all harbored a large amount of north-prevalent haplogroups, such as D, G, C, and Z, and thus were in agreement with their ethnohistory of northern origin. The two populations (Ewenki and Oroqen) with small population census also show concordant features in their matrilineal genetic structures, with lower genetic diversities observed.
Resumo:
A fragment of mitochondrial DNA (mtDNA) control region (similar to700 bp) was sequenced in 104 individuals from 20 breeds (three Chinese domestic breeds, five recently derived breeds and 12 introduced breeds) of domestic rabbits, Oryctolagus cuniculus . Nineteen sites were polymorphic, with 18 transitions and one insertion/deletion, and eight haplotypes (A1, A2, A3, A4, A5, A6, A7 and A8) were identified. Haplotype A1 was the most common and occurred in 89 individuals. In the 25 Chinese rabbits, only haplotype A1 was observed, while four haplotypes (A1, A3, A5 and A6) were found in 26 recently derived individuals. Haplotype A2 was shared by seven individuals among three introduced strains. The other six haplotypes accounted for 0. 96-1. 92% of the animals. Combined with the published sequences of European rabbits, a reduced median-joining network was constructed. The Chinese rabbit mtDNAs were scattered into two clusters of European rabbits. These results suggest that the (so-called) Chinese rabbits were introduced from Europe. Genetic diversity in Chinese rabbits was very low.
Resumo:
Phantom mutations are systematic artifacts generated in the course of the sequencing process. Contra common belief these artificial mutations are nearly ubiquitous in sequencing results, albeit at frequencies that may vary dramatically. The amount of artifacts depends not only on the sort of automated sequencer and sequencing chemistry employed, but also on other lab-specific factors. An experimental study executed on four samples under various combinations of sequencing conditions revealed a number of phantom mutations occurring at the same sites of mitochondrial DNA (mtDNA) repeatedly. To confirm these and identify further hotspots for artifacts, > 5000 mtDNA electropherograms were screened for artificial patterns. Further, > 30000 published hypervariable segment 1 sequences were compared at potential hotspots for phantom mutations, especially for variation at positions 16085 and 16197. Resequencing of several samples confirmed the artificial nature of these and other polymorphisms in the original publications. Single-strand sequencing, as typically executed in medical and anthropological studies, is thus highly vulnerable to this kind of artifacts. In particular, phantom mutation hotspots could easily lead to misidentification of somatic mutations and to misinterpretations in all kinds of clinical mtDNA studies.
Resumo:
In order to clarify the origin and genetic diversity of yak in China, we analysed mitochondrial DNA (mtDNA) control region sequences (similar to 891 bp) in 52 individuals from four domestic yak (Poephagus grunniens) breeds, as well as from a hybrid betwee
Resumo:
The mitochondrial genome complete sequence of Achalinus meiguensis was reported for the first time in the present study. The complete mitochondrial genome of A. meiguensis is 17239 bp in length and contains 13 protein-coding genes, 22 tRNA, 2 rRNA, and 2 non-coding regions (Control regions). On the basis of comparison with the other complete mitochondrial sequences reported, we explored the characteristic of structure and evolution. For example, duplication control regions independently occurred in the evolutionary history of reptiles; the pseudo-tRNA of snakes occurred in the Caenophidia; snake is shorter than other vertebrates in the length of tRNA because of the truncations of T psi C arm (less than 5 bp) and "DHU" arm. The phylogenic analysis by MP and BI analysis showed that the phylogenetic position of A. meiguensis was placed in Caenophidia as a sister group to other advanced snakes with the exclusion of Acrochordus granulatus which was rooted in the Caenophidia. Therefore we suggested that the subfamily Xenodermatinae, which contains A. meiguensis, should be raised to a family rank or higher rank. At the same time, based on the phylogenic statistic test, the tree of Bayesian was used for estimating the divergence time. The results showed that the divergence time between Henophidia and Caenophidia was 109.50 Mya; 106.18 Mya for divergence between Acrochordus granulatus and the other snakes of the Caenophidia; the divergence time of A. meiguensis was 103 Mya, and Viperidae diverged from the unilateral of Elapidae and Colubridae was 96.06 Mya.