912 resultados para Mineral compositions
Resumo:
The paper reports results of a study of clastic heavy mineral assemblages and geochemical features of some assemblages in several Permian-Mesozoic cherty and siliceous-clayey sequences of the Sikhote Alin Region. They are composed of pelagic and hemipelagic sediments of the Panthalassa (Paleopacific) Ocean. Four typical mineral assemblages and their environments are established. In one of the ocean segments, where the sedimentary cover formed during Late Paleozoic - Early Cretaceous, the Permian pelagic domain was characterized by the amphibole-pyroxene assemblage with heavy minerals derived from ophiolites. The Triassic-Jurassic stage was marked by development of the clinopyroxene assemblage with heavy minerals derived from intraplate alkaline volcanic complexes. Middle-Late Jurassic hemipelagic sediments host the zircon-clinopyroxene assemblage with greater role of continental environments and presence of volcanic products of the convergence zone. Another segment of the ocean accumulated red cherts and siliceous-clayey sediments during Jurassic - Early Cretaceous under influence of island-arc volcanism.
Resumo:
In order to reconstruct past variations in the aeolian dust (Kosa) contribution to the Japan Sea, and to establish a direct link between terrestrial and marine climatic records, we have applied statistical procedures to distinguish and quantify detrital subcomponents within the detrital fraction of the late Quaternary hemipelagic sediments in the Japan Sea. Q-mode factor analysis with varimax and oblique rotation of the factors followed by multiple-regression analysis between mineral composition and factor loadings was conducted using six ''detrital'' elements. Four detrital subcomponents were defined, which are attributed to Kosa derived from ''typical'' loess, Kosa from ''weathered'' loess, and fine and coarse arc-derived detritus, respectively, based on comparisons with the chemical and mineral compositions of probable source materials. Using these detrital subcomponents, the variation in Kosa fraction was reconstructed for the last 200 ky. The results reveal millennial-scale as well as glacial-interglacial scale variations in Kosa contribution. Especially, millennial-scale variability of Kosa contribution suggests the presence of high frequency variation in summer monsoon precipitation in the central to east Asia during the last 200 ky.
Resumo:
Hypotheses of origin of ocean deep red clays are under discussion. On an example of the Pacific Ocean grain size, mineralogy and chemical composition of clays are considered. It is shown that they formed from atmospheric dust and andesite pyroclastics. Accumulation of the clays occurred through deposition particle-by-particle and by pellet transport.
Resumo:
Coring during Integrated Ocean Drilling Program Expeditions 315, 316, and 333 recovered turbiditic sands from the forearc Kumano Basin (Site C0002), a Quaternary slope basin (Site C0018), and uplifted trench wedge (Site C0006) along the Kumano Transect of the Nankai Trough accretionary wedge offshore of southwest Japan. The compositions of the submarine turbiditic sands here are investigated in terms of bulk and heavy mineral modal compositions to identify their provenance and dispersal mechanisms, as they may reflect changes in regional tectonics during the past ca. 1.5 Myrs. The results show a marked change in the detrital signature and heavy mineral composition in the forearc and slope basin facies around 1 Ma. This sudden change is interpreted to reflect a major change in the sand provenance, rather than heavy mineral dissolution and/or diagenetic effects, in response to changing tectonics and sedimentation patterns. In the trench-slope basin, the sands older than 1 Ma were probably eroded from the exposed Cretaceous-Tertiary accretionary complex of the Shimanto Belt and transported via the former course of the Tenryu submarine canyon system, which today enters the Nankai Trough northeast of the study area. In contrast, the high abundance of volcanic lithics and volcanic heavy mineral suites of the sands younger than 1 Ma points to a strong volcanic component of sediment derived from the Izu-Honshu collision zones and probably funnelled to this site through the Suruga Canyon. However, sands in the forearc basin show persistent presence of blue sodic amphiboles across the 1 Ma boundary, indicating continuous flux of sediments from the Kumano/Kinokawa River. This implies that the sands in the older turbidites were transported by transverse flow down the slope. The slope basin facies then switched to reflect longitudinal flow around 1 Ma, when the turbiditic sand tapped a volcanic provenance in the Izu-Honshu collision zone, while the sediments transported transversely became confined in the Kumano Basin. Therefore, the change in the depositional systems around 1 Ma is a manifestation of the decoupling of the sediment routing pattern from transverse to long-distance axial flow in response to forearc high uplift along the megasplay fault.
Resumo:
This study includes determination and discussion of the texture and heavy mineral compositions of some modem Nile Delta coastal sands (river, coastal dune, beach-face, and nearshore marine) in order to delineate the process and factors that regulate the size distribution of heavy mineral grains comprising these coastal sands. Textural analysis of unseparated bulk samples indicate that the examined four types of sands differ in their mean grain sizes and degree of sorting. However, analysis of size distribution curves of 10 heavy mineral species or group of species in the four environments having the same general shape and nearly similar in that general order of arrangement. However, these curves vary both in median sizes and sorting. The size distribution of a heavy mineral in the Nile Delta coastal sands appear to depend on: (1) range of grain size fractions in each sample, (2) relative availability of heavy mineral in each size grade of the sample, (3) specific gravity of minerals comprising these sands, and (4) some other unknown factor or factors. Results of size measurement of heavy minerals indicated that increasing specific gravity is accompanied by increasing fineness of the heavy minerals. This study may be useful in search for marine placers and understanding the processes of grain-sorting on the sea beaches.
Resumo:
Thirty-five samples from the drill core of the three Leg 163 sites (Sites 988, 989, and 990) off the southeast coast of Greenland were analyzed for 27 major, minor, and trace elements by X-ray fluorescence (XRF) and for 25 trace elements, including 14 rare-earth elements (REEs), by an inductively coupled plasma source mass spectrometer (ICP/MS). Sr- and Nd-isotope data are reported for seven samples and oxygen-isotope data are reported for 19 plagioclase separates. In addition, a reconnaissance survey of the composition of the main mineral phases, plagioclase, pyroxene, and oxides was determined on an electron microprobe to provide the basic information required for petrogenetic modeling. Olivine pseudomorphs are present in many of the samples, but in no case was an olivine grain found that was fresh enough to give a reliable analysis. The chemical and isotopic data recorded here were determined to provide a comparison with the larger data sets acquired by the Edinburgh, Copenhagen, and Leicester laboratories from both Legs 152 and 163 drill cores. This will permit a detailed comparison of the North Atlantic flood basalt province as a whole with the better known Columbia River, Deccan, and Karoo continental flood basalt provinces, for which substantial chemical data sets are already available at Washington State University.
Resumo:
Hole 1105A penetrated 158 m of gabbros at a site offset 1.3 km east-northeast from Hole 735B on the Atlantis Bank near the Atlantis II Fracture Zone. A total of 118 m of dominantly medium- to coarse-grained intercalated Fe-Ti oxide gabbro and olivine gabbro was recovered from Hole 1105A that shows many petrographic features similar to those recovered from the upper part of Hole 735B. The main rock types are distinguished based on the constituent cumulus phases, with the most primitive gabbros consisting of olivine, plagioclase, and clinopyroxene. The inferred crystallization order is subsequently Fe-Ti oxides (ilmenite and titanomagnetite), followed by orthopyroxene, then apatite, and finally biotite. Orthopyroxene appears to replace olivine in a narrow middle interval. The magmatic evolution is likewise reflected in the mineral compositions. Plagioclase varies from An66 to An28. Olivine varies from Fo78 to Fo35. The gap in olivine crystallization occurs between Fo46 and Fo40 and coincides approximately with the appearance of orthopyroxene (~En50). The clinopyroxenes show large compositional variation in Mg/(Mg + Fe total) from 0.84 to 0.51. The nonquadrilateral cations of clinopyroxene similarly show large variations with Ti increasing for the olivine gabbros and decreasing for the Fe-Ti oxide gabbros with the decrease in Mg/(Mg + Fe total). The apatites are mainly flourapatites. The compositional variation in the gabbros is interpreted as a comagmatic suite resulting from fractional crystallization. Pyroxene geothermometry suggests equilibration temperatures from 1100°C and below. The coexisting Fe-Ti oxide minerals indicate subsolidus equilibration temperatures from 900°C for olivine gabbros to 700°C for the most evolved apatite-bearing gabbros. The cryptic variation in the olivine gabbros defines two or three lenses, 40 to 60 m thick, each characterized by a distinct convex zoning with a lower segment indicating upward reverse fractionation, a central maximum, and an upper segment showing normal fractionation. The Fe-Ti oxide gabbros show cryptic variations independent of the host olivine gabbros and reveal a systematic upward normal fractionation trend transgressing host olivine gabbro boundaries. Forward fractional crystallization modeling, using a likely parental magma composition from the Atlantis II Fracture Zone (MgO = 7.2 wt%; Mg/[Mg + Fe2+] = 0.62), closely matches the compositions of coexisting olivine, plagioclase, and clinopyroxene. This modeling suggests cosaturation of olivine, plagioclase, and clinopyroxene from 1155°C and the addition of Fe-Ti oxides from 1100°C. The liquid line of descent initially shows increasing FeO with moderately increasing SiO2. After saturation of Fe-Ti oxides, the liquid strongly decreases in FeO and TiO2 and increases in SiO2, reaching dacitic compositions at ~10% liquid remaining. The calculations indicate that formation of olivine gabbros can be accounted for by <65% fractionation and that only the residual 35% liquid was saturated in Fe-Ti oxides. The modeling of the solid fractionation products shows that both the olivine gabbro and the Fe-Ti oxide gabbros contain very small amounts of trapped liquid (<5%). The implications are that the gabbros represent crystal mush that originated in a recharging and tapping subaxial chamber. Compaction and upward melt migration in the crystal mush appear to have been terminated with relatively large amounts of interstitial liquid remaining in the upper parts of the cumulate mush. This termination may have been caused by tectonic disturbances, uplift, and associated withdrawal of magma into the subaxial dike and sill system. Prolonged compaction and cooling of the trapped melt in the mush formed small differentiated bodies and lenses by pressure release migration and crystallization along syntectonic channels. This resulted in differentiation products along lateral and vertical channelways in the host gabbro that vary from olivine gabbro, to Fe-Ti oxide gabbro, gabbronorite, and apatite gabbros and show large compositional variations independent of the host olivine gabbros.