796 resultados para Mine communication systems.
Resumo:
In this thesis we perform a detailed analysis of the state of polarization (SOP) of light scattering process using a concatenation of ber-coil based polarization controllers (PCs). We propose a polarization-mode dispersion (PMD) emulator, built through the concatenation of bercoil based PCs and polarization-maintaining bers (PMFs), capable of generate accurate rst- and second-order PMD statistics. We analyze the co-propagation of two optical waves inside a highbirefringence ber. The evolution along the ber of the relative SOP between the two signals is modeled by the de nition of the degree of co-polarization parameter. We validate the model for the degree of co-polarization experimentally, exploring the polarization dependence of the four-wave mixing e ect into a ber with high birefringence. We also study the interaction between signal and noise mediated by Kerr e ect in optical bers. A model accurately describing ampli ed spontaneous emission noise in systems with distributed Raman gain is derived. We show that the noise statistics depends on the propagation distance and on the signal power, and that for distances longer than 120 km and signal powers higher than 6 mW it deviates signi catively from the Gaussian distribution. We explore the all-optical polarization control process based on the stimulated Raman scattering e ect. Mapping parameters like the degree of polarization (DOP), we show that the preferred ampli cation of one particular polarization component of the signal allows a polarization pulling over a wavelength range of 60 nm. The e ciency of the process is higher close to the maximum Raman gain wavelength, where the DOP is roughly constant for a wavelength range of 15 nm. Finally, we study the polarization control in quantum key distribution (QKD) systems with polarization encoding. A model for the quantum bit error rate estimation in QKD systems with time-division multiplexing and wavelength-division multiplexing based polarization control schemes is derived.
Resumo:
Esta tese apresenta um estudo exploratório sobre sistemas de comunicação por luz visível e as suas aplicações em sistemas de transporte inteligentes como forma a melhorar a segurança nas estradas. Foram desenvolvidos neste trabalho, modelos conceptuais e analíticos adequados à caracterização deste tipo de sistemas. Foi desenvolvido um protótipo de baixo custo, capaz de suportar a disseminação de informação utilizando semáforos. A sua realização carece de um estudo detalhado, nomeadamente: i) foi necessário obter modelos capazes de descrever os padrões de radiação numa área de serviço pré-definida; ii) foi necessário caracterizar o meio de comunicações; iii) foi necessário estudar o comportamento de vários esquemas de modulação de forma a optar pelo mais robusto; finalmente, iv) obter a implementação do sistema baseado em FPGA e componentes discretos. O protótipo implementado foi testado em condições reais. Os resultados alcançados mostram os méritos desta solução, chegando mesmo a encorajar a utilização desta tecnologia em outros cenários de aplicação.
Resumo:
A compact highly linear microstrip dual - mode optically switchable filter and a reconfigurable power amplifier are presented. The key characteristics of the dual - mode switchable filter are investigated and described. A second order filter design procedure is outlined to facilitate the realisation of Butterworth and Chebyshev functions. The proposed filter was built and tested with an optical switch, which comprised of a silicon dice acti vated using near infrared light. The measured and simulated results are in good agreement. The measured insertion loss in the ON state was 3.0 dB the isolation in the OFF state was 45 dB at the centre frequency. An evaluation of filter distortion is presen ted for digitally modulated M - QAM and M - QAM OFDM singals.
Resumo:
Single-carrier (SC) block transmission with frequency-domain equalisation (FDE) offers a viable transmission technology for combating the adverse effects of long dispersive channels encountered in high-rate broadband wireless communication systems. However, for high bandwidthefficiency and high power-efficiency systems, the channel can generally be modelled by the Hammerstein system that includes the nonlinear distortion effects of the high power amplifier (HPA) at transmitter. For such nonlinear Hammerstein channels, the standard SC-FDE scheme no longer works. This paper advocates a complex-valued (CV) B-spline neural network based nonlinear SC-FDE scheme for Hammerstein channels. Specifically, We model the nonlinear HPA, which represents the CV static nonlinearity of the Hammerstein channel, by a CV B-spline neural network, and we develop two efficient alternating least squares schemes for estimating the parameters of the Hammerstein channel, including both the channel impulse response coefficients and the parameters of the CV B-spline model. We also use another CV B-spline neural network to model the inversion of the nonlinear HPA, and the parameters of this inverting B-spline model can easily be estimated using the standard least squares algorithm based on the pseudo training data obtained as a natural byproduct of the Hammerstein channel identification. Equalisation of the SC Hammerstein channel can then be accomplished by the usual one-tap linear equalisation in frequency domain as well as the inverse B-spline neural network model obtained in time domain. Extensive simulation results are included to demonstrate the effectiveness of our nonlinear SC-FDE scheme for Hammerstein channels.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Recently, many chaos-based communication systems have been proposed. They can present the many interesting properties of spread spectrum modulations. Besides, they can represent a low-cost increase in security. However, their major drawback is to have a Bit Error Rate (BER) general performance worse than their conventional counterparts. In this paper, we review some innovative techniques that can be used to make chaos-based communication systems attain lower levels of BER in non-ideal environments. In particular, we succinctly describe techniques to counter the effects of finite bandwidth, additive noise and delay in the communication channel. Although much research is necessary for chaos-based communication competing with conventional techniques, the presented results are auspicious. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
In recent years, due to the rapid convergence of multimedia services, Internet and wireless communications, there has been a growing trend of heterogeneity (in terms of channel bandwidths, mobility levels of terminals, end-user quality-of-service (QoS) requirements) for emerging integrated wired/wireless networks. Moreover, in nowadays systems, a multitude of users coexists within the same network, each of them with his own QoS requirement and bandwidth availability. In this framework, embedded source coding allowing partial decoding at various resolution is an appealing technique for multimedia transmissions. This dissertation includes my PhD research, mainly devoted to the study of embedded multimedia bitstreams in heterogenous networks, developed at the University of Bologna, advised by Prof. O. Andrisano and Prof. A. Conti, and at the University of California, San Diego (UCSD), where I spent eighteen months as a visiting scholar, advised by Prof. L. B. Milstein and Prof. P. C. Cosman. In order to improve the multimedia transmission quality over wireless channels, joint source and channel coding optimization is investigated in a 2D time-frequency resource block for an OFDM system. We show that knowing the order of diversity in time and/or frequency domain can assist image (video) coding in selecting optimal channel code rates (source and channel code rates). Then, adaptive modulation techniques, aimed at maximizing the spectral efficiency, are investigated as another possible solution for improving multimedia transmissions. For both slow and fast adaptive modulations, the effects of imperfect channel estimation errors are evaluated, showing that the fast technique, optimal in ideal systems, might be outperformed by the slow adaptive modulation, when a real test case is considered. Finally, the effects of co-channel interference and approximated bit error probability (BEP) are evaluated in adaptive modulation techniques, providing new decision regions concepts, and showing how the widely used BEP approximations lead to a substantial loss in the overall performance.
Resumo:
Synchronization is a key issue in any communication system, but it becomes fundamental in the navigation systems, which are entirely based on the estimation of the time delay of the signals coming from the satellites. Thus, even if synchronization has been a well known topic for many years, the introduction of new modulations and new physical layer techniques in the modern standards makes the traditional synchronization strategies completely ineffective. For this reason, the design of advanced and innovative techniques for synchronization in modern communication systems, like DVB-SH, DVB-T2, DVB-RCS, WiMAX, LTE, and in the modern navigation system, like Galileo, has been the topic of the activity. Recent years have seen the consolidation of two different trends: the introduction of Orthogonal Frequency Division Multiplexing (OFDM) in the communication systems, and of the Binary Offset Carrier (BOC) modulation in the modern Global Navigation Satellite Systems (GNSS). Thus, a particular attention has been given to the investigation of the synchronization algorithms in these areas.
Resumo:
This thesis presents the outcomes of a Ph.D. course in telecommunications engineering. It is focused on the optimization of the physical layer of digital communication systems and it provides innovations for both multi- and single-carrier systems. For the former type we have first addressed the problem of the capacity in presence of several nuisances. Moreover, we have extended the concept of Single Frequency Network to the satellite scenario, and then we have introduced a novel concept in subcarrier data mapping, resulting in a very low PAPR of the OFDM signal. For single carrier systems we have proposed a method to optimize constellation design in presence of a strong distortion, such as the non linear distortion provided by satellites' on board high power amplifier, then we developed a method to calculate the bit/symbol error rate related to a given constellation, achieving an improved accuracy with respect to the traditional Union Bound with no additional complexity. Finally we have designed a low complexity SNR estimator, which saves one-half of multiplication with respect to the ML estimator, and it has similar estimation accuracy.
Resumo:
Fish populations are increasingly being subjected to anthropogenic changes to their sensory environments. The impact of these changes on inter- and intra-specific communication, and its evolutionary consequences, has only recently started to receive research attention. A disruption of the sensory environment is likely to impact communication, especially with respect to reproductive interactions that help to maintain species boundaries. Aquatic ecosystems around the world are being threatened by a variety of environmental stressors, causing dramatic losses of biodiversity and bringing urgency to the need to understand how fish respond to rapid environmental changes. Here, we discuss current research on different communication systems (visual, chemical, acoustic, electric) and explore the state of our knowledge of how complex systems respond to environmental stressors using fish as a model. By far the bulk of our understanding comes from research on visual communication in the context of mate selection and competition for mates, while work on other communication systems is accumulating. In particular, it is increasingly acknowledged that environmental effects on one mode of communication may trigger compensation through other modalities. The strength and direction of selection on communication traits may vary if such compensation occurs. However, we find a dearth of studies that have taken a multimodal approach to investigating the evolutionary impact of environmental change on communication in fish. Future research should focus on the interaction between different modes of communication, especially under changing environmental conditions. Further, we see an urgent need for a better understanding of the evolutionary consequences of changes in communication systems on fish diversity.
Resumo:
Las tecnologías de vídeo en 3D han estado al alza en los últimos años, con abundantes avances en investigación unidos a una adopción generalizada por parte de la industria del cine, y una importancia creciente en la electrónica de consumo. Relacionado con esto, está el concepto de vídeo multivista, que abarca el vídeo 3D, y puede definirse como un flujo de vídeo compuesto de dos o más vistas. El vídeo multivista permite prestaciones avanzadas de vídeo, como el vídeo estereoscópico, el “free viewpoint video”, contacto visual mejorado mediante vistas virtuales, o entornos virtuales compartidos. El propósito de esta tesis es salvar un obstáculo considerable de cara al uso de vídeo multivista en sistemas de comunicación: la falta de soporte para esta tecnología por parte de los protocolos de señalización existentes, que hace imposible configurar una sesión con vídeo multivista mediante mecanismos estándar. Así pues, nuestro principal objetivo es la extensión del Protocolo de Inicio de Sesión (SIP) para soportar la negociación de sesiones multimedia con flujos de vídeo multivista. Nuestro trabajo se puede resumir en tres contribuciones principales. En primer lugar, hemos definido una extensión de señalización para configurar sesiones SIP con vídeo 3D. Esta extensión modifica el Protocolo de Descripción de Sesión (SDP) para introducir un nuevo atributo de nivel de medios, y un nuevo tipo de dependencia de descodificación, que contribuyen a describir los formatos de vídeo 3D que pueden emplearse en una sesión, así como la relación entre los flujos de vídeo que componen un flujo de vídeo 3D. La segunda contribución consiste en una extensión a SIP para manejar la señalización de videoconferencias con flujos de vídeo multivista. Se definen dos nuevos paquetes de eventos SIP para describir las capacidades y topología de los terminales de conferencia, por un lado, y la configuración espacial y mapeo de flujos de una conferencia, por el otro. También se describe un mecanismo para integrar el intercambio de esta información en el proceso de inicio de una conferencia SIP. Como tercera y última contribución, introducimos el concepto de espacio virtual de una conferencia, o un sistema de coordenadas que incluye todos los objetos relevantes de la conferencia (como dispositivos de captura, pantallas, y usuarios). Explicamos cómo el espacio virtual se relaciona con prestaciones de conferencia como el contacto visual, la escala de vídeo y la fidelidad espacial, y proporcionamos reglas para determinar las prestaciones de una conferencia a partir del análisis de su espacio virtual, y para generar espacios virtuales durante la configuración de conferencias.
Resumo:
A new proposal to have secure communications in a system is reported. The basis is the use of a synchronized digital chaotic systems, sending the information signal added to an initial chaos. The received signal is analyzed by another chaos generator located at the receiver and, by a logic boolean function of the chaotic and the received signals, the original information is recovered. One of the most important facts of this system is that the bandwidth needed by the system remain the same with and without chaos.
Resumo:
Federal Transit Administration, Washington, D.C.