138 resultados para Microbiome


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microbial exposures and sex hormones exert potent effects on autoimmune diseases, many of which are more prevalent in women. We demonstrate that early-life microbial exposures determine sex hormone levels and modify progression to autoimmunity in the nonobese diabetic (NOD) mouse model of type 1 diabetes (T1D). Colonization by commensal microbes elevated serum testosterone and protected NOD males from T1D. Transfer of gut microbiota from adult males to immature females altered the recipient's microbiota, resulting in elevated testosterone and metabolomic changes, reduced islet inflammation and autoantibody production, and robust T1D protection. These effects were dependent on androgen receptor activity. Thus, the commensal microbial community alters sex hormone levels and regulates autoimmune disease fate in individuals with high genetic risk.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this chapter the basic aspects helping to understand the microbiome in terms of quantity, diversity, complexity, function, and interaction with the host are discussed. First the nomenclature, definitions of taxa, and measures of diversity as well as methods to unravel this kingdom are outlined. A brief summary on its physiological relevance for general health and the functions exerted specifically by the microbiome is presented. Differences in the composition of the microbiome along the gastrointestinal tract and across the gut wall and its interindividual variations, enterotypes, and stability are highlighted. The reader will be familiarized with all different modulators impacting on the microbiome, namely, intrinsic and extrinsic factors. Intrinsic factors include gastrointestinal secretions (gastric acid, bile, pancreatic juice, mucus), antimicrobial peptides, motility, enteric nervous system, and host genotype. Extrinsic factors are mainly dietary choices, hygiene, stress, alcohol consumption, exercise, and medications. The second part of the chapter focuses on quantitative and qualitative changes in microbiome in liver cirrhosis. The mechanisms contributing to dysbiosis, small intestinal bacterial overgrowth, and bacterial translocation are delineated underscoring their role for the liver-gut axis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The skin is home to trillions of microbes, many of which are recently implicated in immune system regulation and various health conditions (33). The skin is continuously exposed to the outside environment, inviting microbial transfer between human skin and the people, animals, and surfaces with which an individual comes into contact. Thus, the aim of this study is to assess how different environmental exposures influence skin microbe communities, as this can strengthen our understanding of how microbial variation relates to health outcomes. This study investigated the skin microbial communities of humans and domesticated cattle living in rural Madagascar. The V3 region of the 16S rRNA gene was sequenced from samples of zebu (the domesticated cattle of Madagascar), zebu owners, and non-zebu owners. Overall, human armpits were the least diverse sample site, while ankles were the most diverse. The diversity of zebu samples was significantly different from armpits, irrespective of zebu ownership (one-way ANOVA and Tukey’s HSD, p<0.05). However, zebu owner samples (from the armpit, ankle forearm, and hand) were more similar to other zebu owner samples than they were to zebu, yet no more similar to other zebu owner samples than they were to non-zebu owner samples (unweighted UniFrac distances, p<0.05). These data suggest a lack of a microbial signature shared by zebu owners and zebu, though further taxonomic analysis is required to explain the role of additional environmental variables in dictating the microbial communities of various samples sites. Understanding the magnitude and directionality of microbial sharing has implications for a breadth of microbe-related health outcomes, with the potential to explain mosquito host preference and mitigate the threats of vector-borne diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some Eubacterium and Roseburia species are among the most prevalent motile bacteria present in the intestinal microbiota of healthy adults. These flagellate species contribute "cell motility" category genes to the intestinal microbiome and flagellin proteins to the intestinal proteome. We reviewed and revised the annotation of motility genes in the genomes of six Eubacterium and Roseburia species that occur in the human intestinal microbiota and examined their respective locus organization by comparative genomics. Motility gene order was generally conserved across these loci. Five of these species harbored multiple genes for predicted flagellins. Flagellin proteins were isolated from R. inulinivorans strain A2-194 and from E. rectale strains A1-86 and M104/1. The amino-termini sequences of the R. inulinivorans and E. rectale A1-86 proteins were almost identical. These protein preparations stimulated secretion of interleukin-8 (IL-8) from human intestinal epithelial cell lines, suggesting that these flagellins were pro-inflammatory. Flagellins from the other four species were predicted to be pro-inflammatory on the basis of alignment to the consensus sequence of pro-inflammatory flagellins from the beta- and gamma-proteobacteria. Many fliC genes were deduced to be under the control of sigma(28). The relative abundance of the target Eubacterium and Roseburia species varied across shotgun metagenomes from 27 elderly individuals. Genes involved in the flagellum biogenesis pathways of these species were variably abundant in these metagenomes, suggesting that the current depth of coverage used for metagenomic sequencing (3.13-4.79 Gb total sequence in our study) insufficiently captures the functional diversity of genomes present at low (<= 1%) relative abundance. E. rectale and R. inulinivorans thus appear to synthesize complex flagella composed of flagellin proteins that stimulate IL-8 production. A greater depth of sequencing, improved evenness of sequencing and improved metagenome assembly from short reads will be required to facilitate in silico analyses of complete complex biochemical pathways for low-abundance target species from shotgun metagenomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les produits cosmétiques sont des substances utilisées pour entretenir ou modifier l'aspect des parties superficielles du corps humain (telles que la peau, les ongles ou les cheveux). Dans de nombreux pays d’Afrique et d’Asie et dans certaines communautés africaines immigrantes, plusieurs femmes et parfois des hommes utilisent des produits contenant des agents actifs tels que le mercure, l’hydroquinone et le propionate de clobétasol pour éclaircir leur peau. Ces principaux agents sont toxiques et leur présence dans les cosmétiques est règlementée, voire interdite, dans plusieurs pays. Dans notre étude, nous avons déterminé les concentrations de ces ingrédients dans plusieurs produits utilisés en Afrique de l’Ouest et au Canada. Nous avons également exploré l’effet de ces produits sur le microbiome cutané. Nos résultats révèlent que 68 à 84% des crèmes et 7.5 à 65% des savons dépassent les normes lorsqu’on considère l’interdiction de mercure, d’hydroquinone et de propionate de clobétasol et les concentrations déclarées sur les étiquettes ne sont pas souvent fiables. Selon la diversité de Shannon, il semble y avoir plus d’équitabilité, et donc moins de dominance dans le groupe des femmes utilisant les crèmes éclaircissantes que dans le groupe des femmes qui ne les utilisent pas. Par ailleurs, nous n’avons pas trouvé de différences significatives au niveau du microbiome cutané du groupe avec crèmes et sans crèmes au niveau du phylum et du genre. Cependant, d’autres méthodes plus approfondies avec plus d’échantillonnage pourraient révéler à des échelles plus fines (espèces, souches, etc.) l’effet de ces produits sur le microbiome cutané.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les produits cosmétiques sont des substances utilisées pour entretenir ou modifier l'aspect des parties superficielles du corps humain (telles que la peau, les ongles ou les cheveux). Dans de nombreux pays d’Afrique et d’Asie et dans certaines communautés africaines immigrantes, plusieurs femmes et parfois des hommes utilisent des produits contenant des agents actifs tels que le mercure, l’hydroquinone et le propionate de clobétasol pour éclaircir leur peau. Ces principaux agents sont toxiques et leur présence dans les cosmétiques est règlementée, voire interdite, dans plusieurs pays. Dans notre étude, nous avons déterminé les concentrations de ces ingrédients dans plusieurs produits utilisés en Afrique de l’Ouest et au Canada. Nous avons également exploré l’effet de ces produits sur le microbiome cutané. Nos résultats révèlent que 68 à 84% des crèmes et 7.5 à 65% des savons dépassent les normes lorsqu’on considère l’interdiction de mercure, d’hydroquinone et de propionate de clobétasol et les concentrations déclarées sur les étiquettes ne sont pas souvent fiables. Selon la diversité de Shannon, il semble y avoir plus d’équitabilité, et donc moins de dominance dans le groupe des femmes utilisant les crèmes éclaircissantes que dans le groupe des femmes qui ne les utilisent pas. Par ailleurs, nous n’avons pas trouvé de différences significatives au niveau du microbiome cutané du groupe avec crèmes et sans crèmes au niveau du phylum et du genre. Cependant, d’autres méthodes plus approfondies avec plus d’échantillonnage pourraient révéler à des échelles plus fines (espèces, souches, etc.) l’effet de ces produits sur le microbiome cutané.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microbes associated with marine sponges play significant roles in host physiology. Remarkable levels of microbial diversity have been observed in sponges worldwide through both culture-dependent and culture-independent studies. Most studies have focused on the structure of the bacterial communities in sponges and have involved sponges sampled from shallow waters. Here, we used pyrosequencing of 16S rRNA genes to compare the bacterial and archaeal communities associated with two individuals of the marine sponge Inflatella pellicula from the deep-sea, sampled from a depth of 2,900 m, a depth which far exceeds any previous sequence-based report of sponge-associated microbial communities. Sponge-microbial communities were also compared to the microbial community in the surrounding seawater. Sponge-associated microbial communities were dominated by archaeal sequencing reads with a single archaeal OTU, comprising similar to ∼60% and similar to ∼72% of sequences, being observed from Inflatella pellicula. Archaeal sequencing reads were less abundant in seawater (similar to ∼11% of sequences). Sponge-associated microbial communities were less diverse and less even than any other sponge-microbial community investigated to date with just 210 and 273 OTUs (97% sequence identity) identified in sponges, with 4 and 6 dominant OTUs comprising similar to ∼88% and similar to ∼89% of sequences, respectively. Members of the candidate phyla, SAR406, NC10 and ZB3 are reported here from sponges for the first time, increasing the number of bacterial phyla or candidate divisions associated with sponges to 43. A minor cohort from both sponge samples (similar to ∼0.2% and similar to ∼0.3% of sequences) were not classified to phylum level. A single OTU, common to both sponge individuals, dominates these unclassified reads and shares sequence homology with a sponge associated clone which itself has no known close relative and may represent a novel taxon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asthma is a chronic respiratory disease whose prevalence is increasing in the western world. Recently research has begun to focus on the role the microbiome plays in asthma pathogenesis in the hope of further understanding this respiratory disorder. Considered sterile until recently, the lungs have revealed themselves to contain a unique microbiota. A shift towards molecular methods for the quantification and sequencing of microbial DNA has revealed that the airways harbour a unique microbiota with apparent, reproducible differences present between healthy and diseased lungs. There is a hope that in classifying the microbial load of the asthmatic airway an insight may be afforded as to the possible role pulmonary microbes may have in propagating an asthmatic airway response. This could potentially pave the way for new therapeutic strategies for the treatment of chronic lung conditions such as asthma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Disease flares of established atopic dermatitis (AD) are generally associated with a low-diversity skin microbiota and Staphylococcus aureus dominance. The temporal transition of the skin microbiome between early infancy and the dysbiosis of established AD is unknown. Methods: We randomly selected 50 children from the Cork Babies After SCOPE: Evaluating the Longitudinal Impact Using Neurological and Nutritional Endpoints (BASELINE) longitudinal birth cohort for microbiome sampling at 3 points in the first 6 months of life at 4 skin sites relevant to AD: the antecubital and popliteal fossae, nasal tip, and cheek. We identified 10 infants with AD and compared them with 10 randomly selected control infants with no AD. We performed bacterial 16S ribosomal RNA sequencing and analysis directly from clinical samples. Results: Bacterial community structures and diversity shifted over time, suggesting that age strongly affects the skin microbiome in infants. Unlike established AD, these patients with infantile AD did not have noticeably dysbiotic communities before or with disease and were not colonized by S aureus. In comparing patients and control subjects, infants who had affected skin at month 12 had statistically significant differences in bacterial communities on the antecubital fossa at month 2 compared with infants who were unaffected at month 12. In particular, commensal staphylococci were significantly less abundant in infants affected at month 12, suggesting that this genus might protect against the later development of AD. Conclusions: This study suggests that 12-month-old infants with AD were not colonized with S aureus before having AD. Additional studies are needed to confirm whether colonization with commensal staphylococci modulates skin immunity and attenuates development of AD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advances in healthcare over the last 100 years has resulted in an ever increasing elderly population. This presents greater challenges for adequate systemic and oral healthcare delivery. With increasing age there is a natural decline in oral health, leading to the loss of teeth and ultimately for some having to wear denture prosthesis. It is currently estimated that approximately one fifth of the UK and US populations have some form of removable prosthesis. The microbiology of denture induced mucosal inflammation is a pivotal factor to consider in denture care management, similar to many other oral diseases of microbial influence, such as caries, gingivitis and periodontitis. Dentures support the growth of microbial biofilms, structures commonly known as denture plaque. Microbiologically, denture stomatitis (DS) is a disease primarily considered to be of yeast aetiology, with the literature disproportionately focussed on Candida spp. However, the denture surface is capable of carrying up to 1011 microbes per milligram, the majority of which are bacteria. Thus it is apparent that denture plaque is more diverse than we assume. There is a fundamental gap in our understanding of the bacterial composition of denture plaque and the role that they may play in denture related disease such as DS. This is categorised as inflammation of the oral mucosa, a disease affecting around half of all denture wearers. It has been proposed that bacteria and fungi interact on the denture surface and that these polymicrobial interactions lead to synergism and increased DS pathogenesis. Therefore, understanding the denture microbiome composition is the key step to beginning to understand disease pathogenesis, and ultimately help improve treatments and identify novel targets for therapeutic and preventative strategies. A group of 131 patients were included within this study in which they provided samples from their dentures, palatal mucosa, saliva and dental plaque. Microbes residing on the denture surface were quantified using standard Miles and Misra culture technique which investigated the presence of Candida, aerobes and anaerobes. These clinical samples also underwent next generation sequencing using the Miseq Illumina platform to give a more global representation of the microbes present at each of these sites in the oral cavity of these denture wearers. This data was then used to compare the composition and diversity of denture, mucosal and dental plaque between one another, as well as between healthy and diseased individuals. Additional comparisons included denture type and the presence or absence of natural teeth. Furthermore, microbiome data was used to assess differences between patients with varying levels of oral hygiene. The host response to the denture microbiome was investigated by screening the patients saliva for the presence and quantification of a range of antimicrobial peptides that are associated with the oral cavity. Based on the microbiome data an in vitro biofilm model was developed that reflected the composition of denture plaque. These biofilms were then used to assess quantitative and compositional changes over time and in response to denture cleansing treatments. Finally, the systemic implications of denture plaque were assessed by screening denture plaque samples for the presence of nine well known respiratory pathogens using quantitative PCR. The results from this study have shown that the bacterial microbiome composition of denture wearers is not consistent throughout the mouth and varies depending on sample site. Moreover, the presence of natural dentition has a significant impact on the microbiome composition. As for healthy and diseased patients the data suggests that compositional changes responsible for disease progression are occurring at the mucosa, and that dentures may in fact be a reservoir for these microbes. In terms of denture hygiene practices, sleeping with a denture in situ was found to be a common occurrence. Furthermore, significant shifts in denture microbiome composition were found in these individuals when compared to the denture microbiome of those that removed their denture at night. As for the host response, some antimicrobial peptides were found to be significantly reduced in the absence of natural dentition, indicating that the oral immune response is gradually impaired with the loss of teeth. This study also identified potentially serious systemic implications in terms of respiratory infection, as 64.6% of patients carried respiratory pathogens on their denture. In conclusion, this is the first study to provide a detailed understanding of the oral microbiome of denture wearers, and has provided evidence that DS development is more complex than simply a candidal infection. Both fungal and bacterial kingdoms clearly play a role in defining the progression of DS. The biofilm model created in this study demonstrated its potential as a platform to test novel actives. Future use of this model will aid in greater understanding of host: biofilm interactions. Such findings are applicable to oral health and beyond, and may help to identify novel therapeutic targets for the treatment of DS and other biofilm associated diseases.