997 resultados para Mg alloy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work reveals the performance of a trihexyl(tetradecyl)phosphonium bis(trifluoromethanesulfonyl)amide ([P6,6,6,14][NTf2]) ionic liquid (IL) conversion coating upon AZ91D. Such conversion coatings represent a novel avenue for chromate replacement. An optimization of coating performance was pursued by careful alloy pretreatment to generate a surface on which the coating performs best, as the AZ91 substrate is distinctly different from pure or dilute Mg alloys. The results reveal that a functional conversion coating can be achieved, retarding anodic dissolution kinetics, causing a significant decrease in corrosion rate. The coating efficacy is closely tied to the pretreatment performed, which dictates both the microstructural and electrochemical heterogeneity of the surface. The resulting coatings were found to contain MgxFx and phosphonium cation related components, the proportions of which were dependent on the pretreatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of 0.3 wt pct Na on the microstructure of extruded alloy Mg-2Sn-1Zn is examined. We report that Na stabilizes the Mg2Sn phase, resulting in its precipitation during extrusion under conditions where a solid solution is otherwise expected. This effect appears to be thermodynamic in nature and is different from the kinetic enhancement of low- temperature aging reported by Mendis et al. [Phil. Mag. Letters, 86 (2006), 443]. The precipitates of the current study enable useful refinement of the grain size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnesium alloy ZE41 (Mg-Zn-RE-Zr), which is used extensively in the aerospace industry, possesses excellent mechanical properties albeit poor corrosion resistance. This work investigates the mechanism of corrosion, and the interaction between the grain boundary intermetallic phases, the zirconium (Zr)-rich regions within the grains and the bulk Mg rich matrix in both the as-cast and heat-treated conditions. The results of optical and scanning electron microscopy (SEM) show the importance of the microstructure in the initiation and propagation of corrosion in an aqueous environment. The Zr-rich regions play a distinct role in the early stages of corrosion with this alloy. The second part of this work investigates the interaction of two different ionic liquids (ILs) with the surface of the ZE41 alloy. ILs based on trihexyltetradecylphosphonium (P 6,6,6,14) coupled with either diphenylphosphate (DPP) or bis(trifluoromethanesulfonyl) amide (Tf 2N) have been shown to react with Mg alloy surfaces, leading to the formation of a surface film that can improve the corrosion resistance of the alloy. The interaction of the ILs with the ZE41 surface has been investigated by optical microscopy and SEM. Surface characterization has been performed using Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS) and X-ray Photoelectron Spectroscopy (XPS). The surface characterization and microscopy revealed the preferential interaction with the grain boundaries and grain boundary phases. Thus the morphology and microstructure of the Mg surface seems critical in determining the nature of the interaction with the IL. The corrosion protection of the IL films formed on the ZE41 surface was investigated by SEM and potentiodynamic polarisation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deformation twinning plays an important role in the yielding of extruded magnesium alloys, especially when loaded in compression along the extrusion axis. The magnitude of this contribution is not accurately known. The present study employs electron backscatter diffraction to reveal the influence of grain orientation on twin-volume fraction for alloy AZ31 tested in compression to strains between 0.008 and 0.015. For these strains, it is seen that approximately 45 pct of the deformation can be attributed to "tensile" twinning. The variation of twin-volume fraction over different orientation classes correlates closely with the maximum Schmid factors for both tensile twinning and basal slip. These effects are readily explained quantitatively using a mean field crystal plasticity model without recourse to stochastic effects. Encouraged by this, we introduce an analytical approximation based on the uniformity of (axial) work. © 2013 The Minerals, Metals & Materials Society and ASM International.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microstructure evolution after solutionizing and ageing treatment of cast AZ80 Mg alloy were investigated using optical and scanning electron microscopy. Effect of these treatments on grain size, β-Mg17Al12 intermetallic phase, mechanical behavior, and flow asymmetry were investigated. The initial continuous network of β-phase found to be reduced after solutionizing. The dissolution of β-phase and simultaneous grain growth are found to be interrelated. Mechanical properties including yield strength, maximum strength (ultimate compressive strength), and maximum strain attainable in compressive found almost twice than the corresponding values obtained in tension. The asymmetry in compressive and tensile properties is found to decrease with grain size at certain solutionizing duration. Particular heat treatment found to offer best combination of tensile compressive flow properties in AZ80 Mg alloy. Aging under certain conditions found to minimize the strength asymmetry. © ASM International.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnesium alloys are attractive materials for biomedical applications, due to their excellent biocompatibility. However, these alloys show fast corrosion rates in the body that limits their clinical applications. Low-toxic ionic liquid (IL) trimethyl(butyl)phosphonium diphenyl phosphate P1444dpp has been investigated to provide corrosion protection for magnesium alloy AZ31 in simulated body fluids (SBFs). This work reports a preliminary exploration of the influence of different treatment temperatures on the corrosion protection properties of IL films for the magnesium alloy AZ31 in SBFs. Results show that the IL treatment at room temperature did not bring significant improvement in the corrosion performance of the AZ31 in SBF. However, when the treatment temperature was increased to 75°C, the IL treatment resulted in a substantial reduction of the corrosion, in particular the reduction of localized pitting corrosion. The influence of ionic liquid treatment on the corrosion performance of the magnesium alloys AZ31 in SBFs has been investigated by electrochemical impedance spectroscopy (EIS) tests and immersion tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract A model for tensile twinning during the compression of rod textured magnesium is developed based on the idea that these twins nucleate at grain boundaries and that when the twin number density per grain is low these twins readily give rise to the formation of other 'interaction' twins in adjacent grains. Experimental observations of twin aspect ratios measured at a single grain size and twin number densities measured over four grain sizes were used to determine model material parameters. Using these, the model provides reasonable predictions for the observed magnitudes and trends for the following observations:Effect of grain size and stress on twin volume fraction, fractional twin length and the fraction of twin contact.Effect of grain size on the yield stress.Effect of grain size on the general shape of the stress-strain curve at low strains. A parametric study shows the model to be quite robust but that it is particularly sensitive to the value of the exponent assumed for the twin nucleation rate law. It is seen that preventing the formation of interaction twins provides an important avenue for hardening and that the flow stress is also particularly sensitive to the relaxation of the twin back stresses. The model shows the importance of taking microstructure into account when modelling twinning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface passivation of AZNd Mg alloy with Pr(NO3)3 is studied using scanning electrochemical microscopy (SECM) in surface generation/tip collection (SG/TC) and AC modes. Corrosion protection afforded by the Pr treatment and the degradation mechanism in a simulated biological environment was examined on a local scale and compared with non-treated AZNd. SG/TC mode results revealed a drastic decrease in H2 evolution due to the Pr treatment. Mapping the local insulating characteristics using AC-SECM showed higher conductivity of the surface where H2 evolution was most favorable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The corrosion behaviour of metal matrix composites (MMCs) is strictly linked with the presence of heterogeneities such as reinforcement phase, microcrevices, porosity, secondary phase precipitates, and interaction products. Most of the literature related to corrosion behaviour of aluminium matrix composites (AMCs) is focused on SiC reinforced AMCs. On the other hand, there is very limited information available in the literature related to the tribocorrosion behaviour of AMCs. Therefore, the present work aims to investigate corrosion and tribocorrosion behaviour of Al-Si-Cu-Mg alloy matrix composites reinforced with B4C particulates. Corrosion behaviour of 15 and 19% (vol) B4C reinforced Al-Si-Cu-Mg matrix composites and the base alloy was investigated in 0.05M NaCl solution by performing immersion tests and potentiodynamic polarisation tests. Tribocorrosion behaviour of Al-Si-Cu-Mg alloy and its composites were also investigated in 0.05M NaCl solution. The tests were carried out against alumina ball using a reciprocating ball-on-plate tribometer. Electrochemical measurements were performed before, during, and after the sliding tests together with the recording of the tangential force. Results suggest that particle addition did not affect significantly the tendency of corrosion of Al-Si-Cu-Mg alloy without mechanical interactions. During the tribocorrosion tests, the counter material was found to slide mainly on the B4C particles, which protected the matrix alloy from severe wear damage. Furthermore, the wear debris were accumulated on the worn surfaces and entrapped between the reinforcing particles. Therefore, the tendency of corrosion and the corrosion rate decreased in Al-Si-Cu-Mg matrix B4C reinforced composites during the sliding in 0.05M NaCl solution. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Inoue procedure is used to study the influence of Cr and Cu elements, jointly or individually, on the matrix decomposition of quenched Al-Zn-Mg alloys. The addition of copper and copper with chromium does not significantly change the limits of the temperatures of formation of Guinier-Preston zone and the range of the matrix decomposition. The control of the vacancy concentration in the alloys by different heat treatments and the addition of certain elements such as copper and chromium seems to play an important role in the nucleation rate and the kinetics of phase transformations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stress corrosion cracking susceptibility was investigated for an ultra-fine grained (UFG) AI-7.5Mg alloy and a conventional 5083 H111 alloy in natural seawater using slow strain rate testing (SSRT) at very slow strain rates between 1E(-5) s(-1), 1E(-6) s(-1) and 1E(-7) s(-1). The UFG Al-7.5Mg alloy was produced by cryomilling, while the 5083 H111 alloy is considered as a wrought manufactured product. The response of tensile properties to strain rate was analyzed and compared. Negative strain rate sensitivity was observed for both materials in terms of the elongation to failure. However, the UFG alloy displayed strain rate sensitivity in relation to strength while the conventional alloy was relatively strain rate insensitive. The mechanical behavior of the conventional 5083 alloy was attributed to dynamic strain aging (DSA) and delayed pit propagation while the performance of the UFG alloy was related to a diffusion-mediated stress relaxation mechanism that successfully delayed crack initiation events, counteracted by exfoliation and pitting which enhanced crack initiation. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An inverse optimization strategy was developed to determine the single crystal properties from experimental results of the mechanical behavior of polycrystals. The polycrystal behavior was obtained by means of the finite element simulation of a representative volume element of the microstructure in which the dominant slip and twinning systems were included in the constitutive equation of each grain. The inverse problem was solved by means of the Levenberg-Marquardt method, which provided an excellent fit to the experimental results. The iterative optimization process followed a hierarchical scheme in which simple representative volume elements were initially used, followed by more realistic ones to reach the final optimum solution, leading to important reductions in computer time. The new strategy was applied to identify the initial and saturation critical resolved shear stresses and the hardening modulus of the active slip systems and extension twinning in a textured AZ31 Mg alloy. The results were in general agreement with the data in the literature but also showed some differences. They were partially explained because of the higher accuracy of the new optimization strategy but it was also shown that the number of independent experimental stress-strain curves used as input is critical to reach an accurate solution to the inverse optimization problem. It was concluded that at least three independent stress-strain curves are necessary to determine the single crystal behavior from polycrystal tests in the case of highly textured Mg alloys.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analytical transmission electron microscopy indicates that liquid film migration occurs during sintering of an Al-Cu-Mg alloy, that intragranular liquid pools develop from migrating films and that iron segregates to these pools. It is suggested that a high localised iron concentration retards the liquid film migration rate by reducing the coherency strain in the retreating grain, causing a region of the film to detach from the boundary, thus forming an intragranular pool in the advancing grain. Alloys with low iron levels develop few intragranular pools and have high sintered densities. (C) 2003 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mg alloys are attractive materials for medical devices. The main limitation is that they are prone to corrosion. A low toxicity surface coating that enables uniform, controlled corrosion at a desired rate (this usually means it must offer barrier functions for a limited time period) is desirable. Phosphate-based ionic liquids (ILs) are known to induce a coating that can reduce the corrosion rate of Mg alloys, Furthermore, some ILs are known to be biocompatible and therefore, controlling the corrosion behaviour of an Mg alloy and its surface biocompatibility can be achieved through adding an appropriate low toxic IL surface layer to the substrate. In this study, we have evaluated the cytotoxicity of three phosphate-based ILs to primary human coronary artery endothelial cells. Among them, tributyl(methyl)-phosphonium diphenylphosphate (P1,4,4,4dpp) shows the lowest cytotoxicity. Therefore, further work was aimed at developing an appropriate treatment method to produce a homogeneous and passive surface coating based on P1,4,4,4dpp IL, with the focus on investigating the effect of treatment time. The results showed that that the formation of IL coating on AZ31 has proceeded progressively, and treatment time plays an important role. An IL treatment at 100 °C with an extended treatment time of 5 h significantly enhanced corrosion resistance of the AZ31 alloy in simulated body fluid. Additionally, the corrosion morphology was uniform and there was no evidence of "localized pitting corrosion" observed. Such a performance makes this ionic liquid coating as a potential surface coating biodegradable Mg-based implants.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study investigated the grain size dependence of mechanical properties and deformation mechanisms of microcrystalline (mc) and nanocrystalline (nc: grain size below 100 nm) Mg-5wt% Al alloys. The Hall-Petch relationship was investigated by both instrumented indentation tests and compression tests. The test results from the indentation tests and compression tests match well with each other. The breakdown of Hall-Petch relationship and the elevated strain rate sensitivity (SRS) of present Mg-5wt% Al alloys when the grain size was reduced below 58nm indicated the more significant role of GB mediated mechanisms in plastic deformation process. However, the relatively smaller SRS values compared to GB sliding and coble creep process suggested the plastic deformation in the current study is still dislocation mediated mechanism dominant.