922 resultados para Methyl-methacrylate
Resumo:
We have successfully achieved the integration of isothermal amplification and the subsequent analysis of specific gene fragments on poly(methyl methacrylate) microchips. In our experiments, loop-mediated isothermal amplification, which can offer higher specificity and efficiency than PCR, has been performed at a constant temperature (65 degreesC). After amplification, products could be either examined by the integrated microchip-based electrophoresis or directly observed by naked eye with SYBR Green I added into the reaction solution. By such an integrated microsystem, the amplification and the subsequent analysis of prostate-specific antigen gene with template concentration at 23 fg/muL could be finished within 15 min, which demonstrates its advantages of high specificity, good reproducibility, and fast speed in gene detection.
Resumo:
The dewetting behavior of polystyrene (PS) film on poly(methyl methacrylate) (PMMA) sublayer was investigated by changing the short-range roughness of the PMMA sublayer systemically. When the bilayer film was heated to the temperature above both Tgs, the protuberances formed in both layers to reduce the system energy. By tracing the dewetting process of the PS up-layer, the dewetting velocity was found to increase with the roughness of the sublayer.
Resumo:
The wettability of thin poly(methyl methacrylate) (PMMA) films on a silicon wafer with a native oxide layer exposed to solvent vapors is dependent on the solvent properties. In the nonsolvent vapor, the film spread on the substrate with some protrusions generated on the film surface. In the good solvent vapor, dewetting happened. A new interface formed between the anchored PMMA chains and the swollen upper part of the film. Entropy effects caused the upper movable chains to dewet on the anchored chains. The rim instability depended on the surface tension of solvent (i.e., the finger was generated in acetone vapor (gamma(acetone) = 24 mN/m), not in dioxane vapor (gamma(dioxane) = 33 mN/m)). The spacing (lambda) that grew as an exponential function of film thickness h scaled as similar to h(1.31) whereas the mean size (D) of the resulting droplets grew linearly with h.
Resumo:
Well-ordered nanostructured polymeric supramolecular thin films were fabricated from the supramolecular assembly of poly(styrene-block-4-vinylpyridine) (PS-b-P4VP)(H+) and poly(methyl methacrylate)-dibenzo-18-crown-6-poly(methyl methacrylate) (PMCMA). A depression Of cylindrical nanodomains was formed by the block of P4VP(H+) and PMCMA associates surrounded by PS. The repulsive force aroused from the incompatibility between the block of P4VP(H+) and PMCMA was varied through changing the molecule weight (M-w) of PMCMA, the volume fraction of the block of P4VP(H+), and annealing the film at high temperature. Increasing the repulsive force led to a change of overall morphology from ordered nanoporous to featureless structures. The effects of solvent nature and evaporation rate on the film morphology were also investigated. Further evolution of surface morphologies from nanoporous to featureless to nanoporous structures was observed upon exposure to carbon bisulfide vapors for different treatment periods. The wettability of the film surface was changed from hydrophilicity to hydrophobicity due to the changes of the film surface microscopic composition.
Resumo:
Fe(II) pyridinebisimine complexes activated with trialkylaluminium or modified methylaluminoxane (MMAO) as catalysts were employed for the polymerization of methyl methacrylate. Polymer yields, activities and polymer molecular weights as well as molecular weight distributions can be controlled over a wide range by the variation of the structures of the Fe(II) pyridinebisimine complexes and the reaction parameters such as Al/Fe molar ratio, monomer/catalyst molar ratio, monomer concentration, reaction temperature and time applied to the polymerization of methyl methacrylate. Under optimum condition, the catalytic activity of Fe(II) complex is of up to 74.5 kg(polym)/mol(Fe)h.
Resumo:
We have investigated the inverted phase formation and the transition from inverted to normal phase for a cylinder-forming polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer in solution-cast films with thickness about 300 nm during the process of the solution concentrating by slow solvent evaporation. The cast solvent is 1, 1,2,2-tetrachloroethane (Tetra-CE), a good solvent for both blocks but having preferential affinity for the minority PMMA block. During such solution concentrating process, the phase behavior was examined by freeze-drying the samples at different evaporation time, corresponding to at different block copolymer concentrations, phi. As phi increases from similar to 0.1 % (nu/nu), the phase structure evolved from the disordered sphere phase (DS), consisting of random arranged spheres with the majority PS block as I core and the minority PMMA block as a corona, to ordered inverted phases including inverted spheres (IS), inverted cylinders (IC), and inverted hexagonally perforated lamellae (IHPL) with the minority PMMA block comprising the continuum phase, and then to the lamellar (LAM) phase with alternate layers of the two blocks, and finally to the normal cylinder (NC) phase with the majority PS block comprising the continuum phase. The solvent nature and the copolymer solution concentration are shown to be mainly responsible for the inverted phase formation and the phase transition process.
Resumo:
The synthesis and catalytic activity of lanthanide monoamido complexes supported by a beta-diketiminate ligand are described. Donor solvents, such as DME, can cleave the chloro bridges of the dinuclear beta-diketiminate ytterbium dichloride {[(DIPPh)(2)nacnac]YbCl(mu-Cl)(3)Yb[(DIPPh)(2)nacnac](THF)} (1) [(DIPPh)(2)nacnac = N,N-diisopropylphenyl-2,4-pentanediimine anion] to produce the monomeric complex [(DIPPh)(2)nacnac]YbCl2(DME) (2) in high isolated yield. Complex 2 is a useful precursor for the synthesis of beta-diketiminate-ytterbium monoamido derivatives. Reaction of complex 2 with 1 equiv of LiNPr2i in THF at room temperature, after crystallization in THF/toluene mixed solvent, gave the anionic beta-diketiminate-ytterbium amido complex [(DIPPh)(2)nacnac]Yb(NPr2i)(mu-Cl)(2)Li(THF)(2) (3), while similar reaction of complex 2 with LiNPh2 produced the neutral complex [(DIPPh)(2)nacnac]Yb(NPh2)Cl(THF) (4). Recrystallization of complex 3 from toluene solution at elevated temperature led to the neutral beta-diketiminate-lanthanide amido complex [{(DIPPh)(2)nacnac}Yb(NPr2i)(mu-Cl)](2) (5). The reaction medium has a significant effect on the outcome of the reaction.
Resumo:
A novel synthetic route for nearly monodispersed poly(methyl methacrylate)/SiO2 composite particles (PMSCP) is reported. Silica nanoparticles modified with oleic acid were used as 'seeds'. Methyl methacrylate (MMA) monomer was copolymerized with oleic acid via in situ emulsion polymerization, in the presence of an initiator; it resulted finally in the formation of composites with core-shell morphology. The composite particles were examined by transmission electron microscopy (TEM), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). The number of silica particles inside the composite particles increases with an increase in the silica concentration. The effect of grafted silica concentration on the morphology of PMSCP is also reported in detail. It was found by thermogravimetric analysis that PMSCP show a potential application for fire retardance.
Resumo:
The surface and interface morphologies of polystyrene (PS)/poly(methyl methacrylate) (PMMA) thin-film blends and bilayers were investigated by means of atomic force microscopy (AFM) and X-ray photoelectron spectroscopy. Spin-coating a drop of a PS solution directly onto a PMMA bottom layer from a common solvent for both polymers yielded lateral domains that exhibited a well-defined topographical structure. Two common solvents were used in this study. The structure of the films changed progressively as the concentration of the PS solution was varied. The formation of the blend morphology could be explained by the difference in the solubility of the two polymers in the solvent and the dewetting of PS-rich domains from the PMMA-rich phase. Films of the PS/PMMA blend and bilayer were annealed at temperatures above their glass-transition temperatures for up to 70 h. All samples investigated with AFM were covered with PS droplets of various size distributions. Moreover, we investigated the evolution of the annealed PS/PMMA thin-film blend and bilayer and gave a proper explanation for the formation of a relatively complicated interface inside a larger PS droplet.
Resumo:
The effects of solvent nature on the surface topographies of polystyrene (PS)/poly(methyl methacrylate) (PMMA) blend films spin-coated onto the silicon wafer were investigated. Four different solvents, such as ethylbenzene, toluene, tetrahydrofuran and dichloromethane, were chosen. They are better solvents for PS than that for PMMA. When dichloromethane, tetrahydrofuran and toluene were used, PMMA-rich phase domains protruded from the background of PS. When ethylbenzene was used, PS-rich phase domains elevated on the average height of PMMA-rich phase domains. In addition, continuous pits, networks and isolated droplets consisted of PS formed on the blend film surfaces with the decrease of polymer concentrations. The mechanism of the surface morphology evolution was discussed in detail.
Resumo:
The pressure-dependent glass-transition temperatures (T-g's) of poly(methyl methacrylate) (PMMA)/poly(styrene-co-acrylonitrile) (SAN) blends were determined by pressure-volume-temperature (PVT) dilatometry via an isobaric cooling procedure. The Gordon-Taylor and Fox equations were used to evaluate the relationships between the T-g's and compositions of the PMMA/SAN system at different pressures. The relationships were well fitted by the Gordon-Taylor equation, and the experimental data for T-g positively deviated from the values calculated with the Fox equation. Also, the influence of the cooling rate (during the PVT measurements) on T-g was examined.
Resumo:
It was first found that Ind(2)Y(mu -Et)(2)AlEt2 and Ind(2)LnN(i-Pr)(2) (Ln = Y, Yb) exhibit extremely high catalytic activity in the polymerization of methyl methacrylate. The reactions can be carried out over a quite broad range of polymerization temperatures from -30 to 50 degreesC. PMMA with high molecular weight (7.8 x 10(-5)) and high isotacticity (94%) can be obtained by using Ind(2)Y(mu -Et)(2)AlEt2, and narrow molecular weight distribution (M-w/M-n < 1.5) can be obtained by using Ind(2)LnN(i-Pr)(2) (Ln = Y, Yb).
Resumo:
Blends of linear low-density polyethylene (LLDPE) and a diblock copolymer of hydrogenated polybutadiene and methyl methacrylate [P(HB-b-MMA)] were studied by transimission electron microscope (TEM), differential scanning calorimetry (DSC), and wide angle X-ray diffraction (WAXD). At 10 wt% block copolymer content, block copolymer chains exist as spherical micelles and cylindrical micelles in LLDPE matrix. At 50 wt% block copolymer content, block copolymer chains mainly form cylindrical micelles. The core and corona of micelles consist of PMMA and PHB blocks, respectively. DSC results show that the total enthalpy of crystallization of the blends varies linearly with LLDPE weight percent, indicating no interactions in the crystalline phase. In the blends, no distortion of the unit cell is observed in WAXD tests.