885 resultados para Methods for Multi-criteria Evaluation
Resumo:
Earthworks tasks aim at levelling the ground surface at a target construction area and precede any kind of structural construction (e.g., road and railway construction). It is comprised of sequential tasks, such as excavation, transportation, spreading and compaction, and it is strongly based on heavy mechanical equipment and repetitive processes. Under this context, it is essential to optimize the usage of all available resources under two key criteria: the costs and duration of earthwork projects. In this paper, we present an integrated system that uses two artificial intelligence based techniques: data mining and evolutionary multi-objective optimization. The former is used to build data-driven models capable of providing realistic estimates of resource productivity, while the latter is used to optimize resource allocation considering the two main earthwork objectives (duration and cost). Experiments held using real-world data, from a construction site, have shown that the proposed system is competitive when compared with current manual earthwork design.
Resumo:
The aim of this study was to extract multi-parametric measures characterizing different features of sit-to-stand (Si-St) and stand-to-sit (St-Si) transitions in older persons, using a single inertial sensor attached to the chest. Investigated parameters were transition's duration, range of trunk tilt, smoothness of transition pattern assessed by its fractal dimension, and trunk movement's dynamic described by local wavelet energy. A measurement protocol with a Si-St followed by a St-Si postural transition was performed by two groups of participants: the first group (N=79) included Frail Elderly subjects admitted to a post-acute rehabilitation facility and the second group (N=27) were healthy community-dwelling elderly persons. Subjects were also evaluated with Tinetti's POMA scale. Compared to Healthy Elderly persons, frail group at baseline had significantly longer Si-St (3.85±1.04 vs. 2.60±0.32, p=0.001) and St-Si (4.08±1.21 vs. 2.81±0.36, p=0.001) transition's duration. Frail older persons also had significantly decreased smoothness of Si-St transition pattern (1.36±0.07 vs. 1.21±0.05, p=0.001) and dynamic of trunk movement. Measurements after three weeks of rehabilitation in frail older persons showed that smoothness of transition pattern had the highest improvement effect size (0.4) and discriminative performance. These results demonstrate the potential interest of such parameters to distinguish older subjects with different functional and health conditions.
Resumo:
Drug-eluting microspheres are used for embolization of hypervascular tumors and allow for local controlled drug release. Although the drug release from the microspheres relies on fast ion-exchange, so far only slow-releasing in vitro dissolution methods have been correlated to in vivo data. Three in vitro release methods are assessed in this study for their potential to predict slow in vivo release of sunitinib from chemoembolization spheres to the plasma, and fast local in vivo release obtained in an earlier study in rabbits. Release in an orbital shaker was slow (t50%=4.5h, 84% release) compared to fast release in USP 4 flow-through implant cells (t50%=1h, 100% release). Sunitinib release in saline from microspheres enclosed in dialysis inserts was prolonged and incomplete (t50%=9 days, 68% release) due to low drug diffusion through the dialysis membrane. The slow-release profile fitted best to low sunitinib plasma AUC following injection of sunitinib-eluting spheres. Although limited by lack of standardization, release in the orbital shaker fitted best to local in vivo sunitinib concentrations. Drug release in USP flow-through implant cells was too fast to correlate with local concentrations, although this method is preferred to discriminate between different sphere types.
Resumo:
This Phase II follow-up study of IHRB Project TR-473 focused on the performance evaluation of rubblized pavements in Iowa. The primary objective of this study was to evaluate the structural condition of existing rubblized concrete pavements across Iowa through Falling Weight Deflectometer (FWD) tests, Dynamic Cone Penetrometer (DCP) tests, visual pavement distress surveys, etc. Through backcalculation of FWD deflection data using the Iowa State University's advanced layer moduli backcalculation program, the rubblized layer moduli were determined for various projects and compared with each other for correlating with the long-term pavement performance. The AASHTO structural layer coefficient for rubblized layer was also calculated using the rubblized layer moduli. To validate the mechanistic-empirical (M-E) hot mix asphalt (HMA) overlay thickness design procedure developed during the Phase I study, the actual HMA overlay thicknesses from the rubblization projects were compared with the predicted thicknesses obtained from the design software. The results of this study show that rubblization is a valid option to use in Iowa in the rehabilitation of portland cement concrete pavements provided the foundation is strong enough to support construction operations during the rubblization process. The M-E structural design methodology developed during Phase I can estimate the HMA overlay thickness reasonably well to achieve long-lasting performance of HMA pavements. The rehabilitation strategy is recommended for continued use in Iowa under those conditions conducive for rubblization.
Resumo:
Within Data Envelopment Analysis, several alternative models allow for an environmental adjustment. The majority of them deliver divergent results. Decision makers face the difficult task of selecting the most suitable model. This study is performed to overcome this difficulty. By doing so, it fills a research gap. First, a two-step web-based survey is conducted. It aims (1) to identify the selection criteria, (2) to prioritize and weight the selection criteria with respect to the goal of selecting the most suitable model and (3) to collect the preferences about which model is preferable to fulfil each selection criterion. Second, Analytic Hierarchy Process is used to quantify the preferences expressed in the survey. Results show that the understandability, the applicability and the acceptability of the alternative models are valid selection criteria. The selection of the most suitable model depends on the preferences of the decision makers with regards to these criteria.
Resumo:
Wind power is a rapidly developing, low-emission form of energy production. In Fin-land, the official objective is to increase wind power capacity from the current 1 005 MW up to 3 500–4 000 MW by 2025. By the end of April 2015, the total capacity of all wind power project being planned in Finland had surpassed 11 000 MW. As the amount of projects in Finland is record high, an increasing amount of infrastructure is also being planned and constructed. Traditionally, these planning operations are conducted using manual and labor-intensive work methods that are prone to subjectivity. This study introduces a GIS-based methodology for determining optimal paths to sup-port the planning of onshore wind park infrastructure alignment in Nordanå-Lövböle wind park located on the island of Kemiönsaari in Southwest Finland. The presented methodology utilizes a least-cost path (LCP) algorithm for searching of optimal paths within a high resolution real-world terrain dataset derived from airborne lidar scannings. In addition, planning data is used to provide a realistic planning framework for the anal-ysis. In order to produce realistic results, the physiographic and planning datasets are standardized and weighted according to qualitative suitability assessments by utilizing methods and practices offered by multi-criteria evaluation (MCE). The results are pre-sented as scenarios to correspond various different planning objectives. Finally, the methodology is documented by using tools of Business Process Management (BPM). The results show that the presented methodology can be effectively used to search and identify extensive, 20 to 35 kilometers long networks of paths that correspond to certain optimization objectives in the study area. The utilization of high-resolution terrain data produces a more objective and more detailed path alignment plan. This study demon-strates that the presented methodology can be practically applied to support a wind power infrastructure alignment planning process. The six-phase structure of the method-ology allows straightforward incorporation of different optimization objectives. The methodology responds well to combining quantitative and qualitative data. Additional-ly, the careful documentation presents an example of how the methodology can be eval-uated and developed as a business process. This thesis also shows that more emphasis on the research of algorithm-based, more objective methods for the planning of infrastruc-ture alignment is desirable, as technological development has only recently started to realize the potential of these computational methods.
Resumo:
Le Problème de Tournées de Véhicules (PTV) est une clé importante pour gérér efficacement des systèmes logistiques, ce qui peut entraîner une amélioration du niveau de satisfaction de la clientèle. Ceci est fait en servant plus de clients dans un temps plus court. En terme général, il implique la planification des tournées d'une flotte de véhicules de capacité donnée basée à un ou plusieurs dépôts. Le but est de livrer ou collecter une certain quantité de marchandises à un ensemble des clients géographiquement dispersés, tout en respectant les contraintes de capacité des véhicules. Le PTV, comme classe de problèmes d'optimisation discrète et de grande complexité, a été étudié par de nombreux au cours des dernières décennies. Étant donné son importance pratique, des chercheurs dans les domaines de l'informatique, de la recherche opérationnelle et du génie industrielle ont mis au point des algorithmes très efficaces, de nature exacte ou heuristique, pour faire face aux différents types du PTV. Toutefois, les approches proposées pour le PTV ont souvent été accusées d'être trop concentrées sur des versions simplistes des problèmes de tournées de véhicules rencontrés dans des applications réelles. Par conséquent, les chercheurs sont récemment tournés vers des variantes du PTV qui auparavant étaient considérées trop difficiles à résoudre. Ces variantes incluent les attributs et les contraintes complexes observés dans les cas réels et fournissent des solutions qui sont exécutables dans la pratique. Ces extensions du PTV s'appellent Problème de Tournées de Véhicules Multi-Attributs (PTVMA). Le but principal de cette thèse est d'étudier les différents aspects pratiques de trois types de problèmes de tournées de véhicules multi-attributs qui seront modélisés dans celle-ci. En plus, puisque pour le PTV, comme pour la plupart des problèmes NP-complets, il est difficile de résoudre des instances de grande taille de façon optimale et dans un temps d'exécution raisonnable, nous nous tournons vers des méthodes approcheés à base d’heuristiques.
Resumo:
Milk supply from Mexican dairy farms does not meet demand and small-scale farms can contribute toward closing the gap. Two multi-criteria programming techniques, goal programming and compromise programming, were used in a study of small-scale dairy farms in central Mexico. To build the goal and compromise programming models, 4 ordinary linear programming models were also developed, which had objective functions to maximize metabolizable energy for milk production, to maximize margin of income over feed costs, to maximize metabolizable protein for milk production, and to minimize purchased feedstuffs. Neither multicriteria approach was significantly better than the other; however, by applying both models it was possible to perform a more comprehensive analysis of these small-scale dairy systems. The multi-criteria programming models affirm findings from previous work and suggest that a forage strategy based on alfalfa, rye-grass, and corn silage would meet nutrient requirements of the herd. Both models suggested that there is an economic advantage in rescheduling the calving season to the second and third calendar quarters to better synchronize higher demand for nutrients with the period of high forage availability.
Resumo:
Increased penetration of generation and decentralised control are considered to be feasible and effective solution for reducing cost and emissions and hence efficiency associated with power generation and distribution. Distributed generation in combination with the multi-agent technology are perfect candidates for this solution. Pro-active and autonomous nature of multi-agent systems can provide an effective platform for decentralised control whilst improving reliability and flexibility of the grid.
Resumo:
An extensive off-line evaluation of the Noah/Single Layer Urban Canopy Model (Noah/SLUCM) urban land-surface model is presented using data from 15 sites to assess (1) the ability of the scheme to reproduce the surface energy balance observed in a range of urban environments, including seasonal changes, and (2) the impact of increasing complexity of input parameter information. Model performance is found to be most dependent on representation of vegetated surface area cover; refinement of other parameter values leads to smaller improvements. Model biases in net all-wave radiation and trade-offs between turbulent heat fluxes are highlighted using an optimization algorithm. Here we use the Urban Zones to characterize Energy partitioning (UZE) as the basis to assign default SLUCM parameter values. A methodology (FRAISE) to assign sites (or areas) to one of these categories based on surface characteristics is evaluated. Using three urban sites from the Basel Urban Boundary Layer Experiment (BUBBLE) dataset, an independent evaluation of the model performance with the parameter values representative of each class is performed. The scheme copes well with both seasonal changes in the surface characteristics and intra-urban heterogeneities in energy flux partitioning, with RMSE performance comparable to similar state-of-the-art models for all fluxes, sites and seasons. The potential of the methodology for high-resolution atmospheric modelling application using the Weather Research and Forecasting (WRF) model is highlighted. This analysis supports the recommendations that (1) three classes are appropriate to characterize the urban environment, and (2) that the parameter values identified should be adopted as default values in WRF.
Resumo:
Atmospheric pollution over South Asia attracts special attention due to its effects on regional climate, water cycle and human health. These effects are potentially growing owing to rising trends of anthropogenic aerosol emissions. In this study, the spatio-temporal aerosol distributions over South Asia from seven global aerosol models are evaluated against aerosol retrievals from NASA satellite sensors and ground-based measurements for the period of 2000–2007. Overall, substantial underestimations of aerosol loading over South Asia are found systematically in most model simulations. Averaged over the entire South Asia, the annual mean aerosol optical depth (AOD) is underestimated by a range 15 to 44% across models compared to MISR (Multi-angle Imaging SpectroRadiometer), which is the lowest bound among various satellite AOD retrievals (from MISR, SeaWiFS (Sea-Viewing Wide Field-of-View Sensor), MODIS (Moderate Resolution Imaging Spectroradiometer) Aqua and Terra). In particular during the post-monsoon and wintertime periods (i.e., October–January), when agricultural waste burning and anthropogenic emissions dominate, models fail to capture AOD and aerosol absorption optical depth (AAOD) over the Indo–Gangetic Plain (IGP) compared to ground-based Aerosol Robotic Network (AERONET) sunphotometer measurements. The underestimations of aerosol loading in models generally occur in the lower troposphere (below 2 km) based on the comparisons of aerosol extinction profiles calculated by the models with those from Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) data. Furthermore, surface concentrations of all aerosol components (sulfate, nitrate, organic aerosol (OA) and black carbon (BC)) from the models are found much lower than in situ measurements in winter. Several possible causes for these common problems of underestimating aerosols in models during the post-monsoon and wintertime periods are identified: the aerosol hygroscopic growth and formation of secondary inorganic aerosol are suppressed in the models because relative humidity (RH) is biased far too low in the boundary layer and thus foggy conditions are poorly represented in current models, the nitrate aerosol is either missing or inadequately accounted for, and emissions from agricultural waste burning and biofuel usage are too low in the emission inventories. These common problems and possible causes found in multiple models point out directions for future model improvements in this important region.
Resumo:
We demonstrate that stakeholder-oriented multi-criteria analysis (MCA) can adequately address a variety of sustainable development dilemmas in decision-making, especially when applied to complex project evaluations involving multiple objectives and multiple stakeholder groups. Such evaluations are typically geared towards satisfying simultaneously private economic goals, broader social objectives and environmental targets. We show that, under specific conditions, a variety of stakeholder-oriented MCA approaches may be able to contribute substantively to the resolution or improved governance of societal conflicts and the pursuit of the public good in the form of sustainable development. We contrast the potential usefulness of these stakeholder-oriented approaches – in terms of their ability to contribute to sustainable development – with more conventional MCA approaches and social cost–benefit analysis.
Resumo:
The concentrations of sulfate, black carbon (BC) and other aerosols in the Arctic are characterized by high values in late winter and spring (so-called Arctic Haze) and low values in summer. Models have long been struggling to capture this seasonality and especially the high concentrations associated with Arctic Haze. In this study, we evaluate sulfate and BC concentrations from eleven different models driven with the same emission inventory against a comprehensive pan-Arctic measurement data set over a time period of 2 years (2008–2009). The set of models consisted of one Lagrangian particle dispersion model, four chemistry transport models (CTMs), one atmospheric chemistry-weather forecast model and five chemistry climate models (CCMs), of which two were nudged to meteorological analyses and three were running freely. The measurement data set consisted of surface measurements of equivalent BC (eBC) from five stations (Alert, Barrow, Pallas, Tiksi and Zeppelin), elemental carbon (EC) from Station Nord and Alert and aircraft measurements of refractory BC (rBC) from six different campaigns. We find that the models generally captured the measured eBC or rBC and sulfate concentrations quite well, compared to previous comparisons. However, the aerosol seasonality at the surface is still too weak in most models. Concentrations of eBC and sulfate averaged over three surface sites are underestimated in winter/spring in all but one model (model means for January–March underestimated by 59 and 37 % for BC and sulfate, respectively), whereas concentrations in summer are overestimated in the model mean (by 88 and 44 % for July–September), but with overestimates as well as underestimates present in individual models. The most pronounced eBC underestimates, not included in the above multi-site average, are found for the station Tiksi in Siberia where the measured annual mean eBC concentration is 3 times higher than the average annual mean for all other stations. This suggests an underestimate of BC sources in Russia in the emission inventory used. Based on the campaign data, biomass burning was identified as another cause of the modeling problems. For sulfate, very large differences were found in the model ensemble, with an apparent anti-correlation between modeled surface concentrations and total atmospheric columns. There is a strong correlation between observed sulfate and eBC concentrations with consistent sulfate/eBC slopes found for all Arctic stations, indicating that the sources contributing to sulfate and BC are similar throughout the Arctic and that the aerosols are internally mixed and undergo similar removal. However, only three models reproduced this finding, whereas sulfate and BC are weakly correlated in the other models. Overall, no class of models (e.g., CTMs, CCMs) performed better than the others and differences are independent of model resolution.