896 resultados para Methacrylate Polymer Systems


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Monte Carlo simulations were used to model A/B/A-B ternary mixtures with different AB diblock copolymer volume fractions for which both the dispersed and continuous phase volume fractions were kept constant. For concentrations of the diblock copolymer below a critical value, the domain size increment of the dispersed phase decreases linearly with the copolymer concentration. This is in agreement with the predictions of Noolandi and Hong. The dependence of the domain size as a function of the copolymer volume fraction can also be fitted by the equation of Tang and Huang. Our simulations indicate, for the first time, that the micelles form before saturation of the interface occurs. This means that the formation of the micelles is not a result of the saturation of the interface.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Blends of linear low-density polyethylene (LLDPE) and a diblock copolymer of hydrogenated polybutadiene and methyl methacrylate [P(HB-b-MMA)] were studied by transimission electron microscope (TEM), differential scanning calorimetry (DSC), and wide angle X-ray diffraction (WAXD). At 10 wt% block copolymer content, block copolymer chains exist as spherical micelles and cylindrical micelles in LLDPE matrix. At 50 wt% block copolymer content, block copolymer chains mainly form cylindrical micelles. The core and corona of micelles consist of PMMA and PHB blocks, respectively. DSC results show that the total enthalpy of crystallization of the blends varies linearly with LLDPE weight percent, indicating no interactions in the crystalline phase. In the blends, no distortion of the unit cell is observed in WAXD tests.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Morphology, mechanical properties, and interfacial interaction of polyamide 1010/polypropylene (PA1010/ PP) blends compatibilized with polypropylene grafted with glycidyl methacrylate (PP-g-GMA) were studied. It was found that the size of the PP domains, tensile and impact strength of ternary blends, and adhesion fracture energy between two layers of PA1010 and PP were all significantly dependent on the PP-g-GMA contents in the PP layer. Correlations between morphology and related properties were sought. The improvements in properties have been attributed to chemical and physical interaction occurring between PA1010 and PP-g-GMA. (C) 1997 Elsevier Science Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Diphenyl-o-methoxyphenylmethyl methacrylate was polymerized with several organolithium complexes of chiral ligand such as (-)-sparteine (Sp) and (S,S)-(+)-2,3-dimethoxy-1,4-bis(dimethylamino)butane (DDB). (+)-DDB was effective in preparing a polymer of high optical rotation, whereas (-)-Sp only gave oligomers with low optical rotation for the repulsive hindrance between the bulky ester group and the rigid ligand. The optical rotation of the polymer decreased rapidly to a constant value due to the propeller-propeller transition, which has been demonstrated by H-1 n.m.r. and circular dichroic spectra.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The dynamics of phase separation in a binary polymer blend of poly(vinyl acetate) with poly(methyl methacrylate) was investigated by using a time-resolved light-scattering technique. In the later stages of spinodal decomposition, a simple dynamic scaling law was found for the scattering function S(q, t)(S(q, t) approximately I(q, t)): S(q, t)q(m)-3 S approximately (q/q(m)). The scaling function determined experimentally was in good agreement with that predicted by Furukawa, S approximately (X) approximately X2/(3 + X8) for critical concentration, and approximately in agreement with that predicted by Furukawa, S approximately (X) approximately X2/(3 + X6) for non-critical mixtures. The light-scattering invariant shows that the later stages of the spinodal decomposition were undergoing domain ripening.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dynamic mechanical analysis (DMA) is an analytical technique in which an oscillating stress is applied to a sample and the resultant strain measured as functions of both oscillatory frequency and temperature. From this, a comprehensive knowledge of the relationships between the various viscoelastic parameters, e.g. storage and loss moduli, mechanical damping parameter (tan delta), dynamic viscosity, and temperature may be obtained. An introduction to the theory of DMA and pharmaceutical and biomedical examples of the use of this technique are presented in this concise review. In particular, examples are described in which DMA has been employed to quantify the storage and loss moduli of polymers, polymer damping properties, glass transition temperature(s), rate and extent of curing of polymer systems, polymer-polymer compatibility and identification of sol-gel transitions. Furthermore, future applications of the technique for the optimisation of the formulation of pharmaceutical and biomedical systems are discussed. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose The aim of this work was to examine, for amorphous solid dispersions, how the thermal analysis method selected impacts on the construction of thermodynamic phase diagrams, and to assess the predictive value of such phase diagrams in the selection of optimal, physically stable API-polymer compositions. Methods Thermodynamic phase diagrams for two API/polymer systems (naproxen/HPMC AS LF and naproxen/Kollidon 17 PF) were constructed from data collected using two different thermal analysis methods. The “dynamic” method involved heating the physical mixture at a rate of 1 &[deg]C/minute. In the "static" approach, samples were held at a temperature above the polymer Tg for prolonged periods, prior to scanning at 10 &[deg]C/minute. Subsequent to construction of phase diagrams, solid dispersions consisting of API-polymer compositions representative of different zones in the phase diagrams were spray dried and characterised using DSC, pXRD, TGA, FTIR, DVS and SEM. The stability of these systems was investigated under the following conditions: 25 &[deg]C, desiccated; 25 &[deg]C, 60 % RH; 40 &[deg]C, desiccated; 40 &[deg]C, 60 % RH. Results Endset depression occurred with increasing polymer volume fraction (Figure 1a). In conjunction with this data, Flory-Huggins and Gordon-Taylor theory were applied to construct thermodynamic phase diagrams (Figure 1b). The Flory-Huggins interaction parameter (&[chi]) for naproxen and HPMC AS LF was + 0.80 and + 0.72, for the dynamic and static methods respectively. For naproxen and Kollidon 17 PF, the dynamic data resulted in an interaction parameter of - 1.1 and the isothermal data produced a value of - 2.2. For both systems, the API appeared to be less soluble in the polymer when the dynamic approach was used. Stability studies of spray dried solid dispersions could be used as a means of validating the thermodynamic phase diagrams. Conclusion The thermal analysis method used to collate data has a deterministic effect on the phase diagram produced. This effect should be considered when constructing thermodynamic phase diagrams, as they can be a useful tool in predicting the stability of amorphous solid dispersions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

From the early stages of the twentieth century, polyaniline (PANI), a well-known and extensively studied conducting polymer has captured the attention of scientific community owing to its interesting electrical and optical properties. Starting from its structural properties, to the currently pursued optical, electrical and electrochemical properties, extensive investigations on pure PANI and its composites are still much relevant to explore its potentialities to the maximum extent. The synthesis of highly crystalline PANI films with ordered structure and high electrical conductivity has not been pursued in depth yet. Recently, nanostructured PANI and the nanocomposites of PANI have attracted a great deal of research attention owing to the possibilities of applications in optical switching devices, optoelectronics and energy storage devices. The work presented in the thesis is centered around the realization of highly conducting and structurally ordered PANI and its composites for applications mainly in the areas of nonlinear optics and electrochemical energy storage. Out of the vast variety of application fields of PANI, these two areas are specifically selected for the present studies, because of the following observations. The non-linear optical properties and the energy storing properties of PANI depend quite sensitively on the extent of conjugation of the polymer structure, the type and concentration of the dopants added and the type and size of the nano particles selected for making the nanocomposites. The first phase of the work is devoted to the synthesis of highly ordered and conducting films of PANI doped with various dopants and the structural, morphological and electrical characterization followed by the synthesis of metal nanoparticles incorporated PANI samples and the detailed optical characterization in the linear and nonlinear regimes. The second phase of the work comprises the investigations on the prospects of PANI in realizing polymer based rechargeable lithium ion cells with the inherent structural flexibility of polymer systems and environmental safety and stability. Secondary battery systems have become an inevitable part of daily life. They can be found in most of the portable electronic gadgets and recently they have started powering automobiles, although the power generated is low. The efficient storage of electrical energy generated from solar cells is achieved by using suitable secondary battery systems. The development of rechargeable battery systems having excellent charge storage capacity, cyclability, environmental friendliness and flexibility has yet to be realized in practice. Rechargeable Li-ion cells employing cathode active materials like LiCoO2, LiMn2O4, LiFePO4 have got remarkable charge storage capacity with least charge leakage when not in use. However, material toxicity, chance of cell explosion and lack of effective cell recycling mechanism pose significant risk factors which are to be addressed seriously. These cells also lack flexibility in their design due to the structural characteristics of the electrode materials. Global research is directed towards identifying new class of electrode materials with less risk factors and better structural stability and flexibility. Polymer based electrode materials with inherent flexibility, stability and eco-friendliness can be a suitable choice. One of the prime drawbacks of polymer based cathode materials is the low electronic conductivity. Hence the real task with this class of materials is to get better electronic conductivity with good electrical storage capability. Electronic conductivity can be enhanced by using proper dopants. In the designing of rechargeable Li-ion cells with polymer based cathode active materials, the key issue is to identify the optimum lithiation of the polymer cathode which can ensure the highest electronic conductivity and specific charge capacity possible The development of conducting polymer based rechargeable Li-ion cells with high specific capacity and excellent cycling characteristics is a highly competitive area among research and development groups, worldwide. Polymer based rechargeable batteries are specifically attractive due to the environmentally benign nature and the possible constructional flexibility they offer. Among polymers having electrical transport properties suitable for rechargeable battery applications, polyaniline is the most favoured one due to its tunable electrical conducting properties and the availability of cost effective precursor materials for its synthesis. The performance of a battery depends significantly on the characteristics of its integral parts, the cathode, anode and the electrolyte, which in turn depend on the materials used. Many research groups are involved in developing new electrode and electrolyte materials to enhance the overall performance efficiency of the battery. Currently explored electrolytes for Li ion battery applications are in liquid or gel form, which makes well-defined sealing essential. The use of solid electrolytes eliminates the need for containment of liquid electrolytes, which will certainly simplify the cell design and improve the safety and durability. The other advantages of polymer electrolytes include dimensional stability, safety and the ability to prevent lithium dendrite formation. One of the ultimate aims of the present work is to realize all solid state, flexible and environment friendly Li-ion cells with high specific capacity and excellent cycling stability. Part of the present work is hence focused on identifying good polymer based solid electrolytes essential for realizing all solid state polymer based Li ion cells.The present work is an attempt to study the versatile roles of polyaniline in two different fields of technological applications like nonlinear optics and energy storage. Conducting form of doped PANI films with good extent of crystallinity have been realized using a level surface assisted casting method in addition to the generally employed technique of spin coating. Metal nanoparticles embedded PANI offers a rich source for nonlinear optical studies and hence gold and silver nanoparticles have been used for making the nanocomposites in bulk and thin film forms. These PANI nanocomposites are found to exhibit quite dominant third order optical non-linearity. The highlight of these studies is the observation of the interesting phenomenon of the switching between saturable absorption (SA) and reverse saturable absorption (RSA) in the films of Ag/PANI and Au/PANI nanocomposites, which offers prospects of applications in optical switching. The investigations on the energy storage prospects of PANI were carried out on Li enriched PANI which was used as the cathode active material for assembling rechargeable Li-ion cells. For Li enrichment or Li doping of PANI, n-Butyllithium (n-BuLi) in hexanes was used. The Li doping as well as the Li-ion cell assembling were carried out in an argon filled glove box. Coin cells were assembled with Li doped PANI with different doping concentrations, as the cathode, LiPF6 as the electrolyte and Li metal as the anode. These coin cells are found to show reasonably good specific capacity around 22mAh/g and excellent cycling stability and coulombic efficiency around 99%. To improve the specific capacity, composites of Li doped PANI with inorganic cathode active materials like LiFePO4 and LiMn2O4 were synthesized and coin cells were assembled as mentioned earlier to assess the electrochemical capability. The cells assembled using the composite cathodes are found to show significant enhancement in specific capacity to around 40mAh/g. One of the other interesting observations is the complete blocking of the adverse effects of Jahn-Teller distortion, when the composite cathode, PANI-LiMn2O4 is used for assembling the Li-ion cells. This distortion is generally observed, near room temperature, when LiMn2O4 is used as the cathode, which significantly reduces the cycling stability of the cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Rubber composites containing multiwalled carbon nanotubes have been irradiated with near-infrared light to study their reversible photomechanical actuation response. We demonstrate that the actuation is reproducible across differing polymer systems. The response is directly related to the degree of uniaxial alignment of the nanotubes in the matrix, contracting the samples along the alignment axis. The actuation stroke depends on the specific polymer being tested; however, the general response is universal for all composites tested. We conduct a detailed study of tube alignment induced by stress and propose a model for the reversible actuation behavior based on the orientational averaging of the local response. The single phenomenological parameter of this model describes the response of an individual tube to adsorption of low-energy photons; its experimentally determined value may suggest some ideas about such a response.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The motion in concentrated polymer systems is described by either the Rouse or the reptation model, which both assume that the relaxation of each polymer chain is independent of the surrounding chains. This, however, is in contradiction with several experiments. In this Letter, we propose a universal description of orientation coupling in polymer melts in terms of the time-dependent coupling parameter κ(t). We use molecular dynamics simulations to show that the coupling parameter increases with time, reaching about 50% at long times, independently of the chain length or blend composition. This leads to predictions of component dynamics in mixtures of different molecular weights from the knowledge of monodisperse dynamics for unentangled melts. Finally, we demonstrate that entanglements do not play a significant role in the observed coupling. © 2010 The American Physical Society

Relevância:

90.00% 90.00%

Publicador:

Resumo:

If acid-sensitive drugs or cells are administered orally, there is often a reduction in efficacy associated with gastric passage. Formulation into a polymer matrix is a potential method to improve their stability. The visualization of pH within these materials may help better understand the action of these polymer systems and allow comparison of different formulations. We herein describe the development of a novel confocal laser-scanning microscopy (CLSM) method for visualizing pH changes within polymer matrices and demonstrate its applicability to an enteric formulation based on chitosan-coated alginate gels. The system in question is first shown to protect an acid-sensitive bacterial strain to low pH, before being studied by our technique. Prior to this study, it has been claimed that protection by these materials is a result of buffering, but this has not been demonstrated. The visualization of pH within these matrices during exposure to a pH 2.0 simulated gastric solution showed an encroachment of acid from the periphery of the capsule, and a persistence of pHs above 2.0 within the matrix. This implies that the protective effect of the alginate-chitosan matrices is most likely due to a combination of buffering of acid as it enters the polymer matrix and the slowing of acid penetration.

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The structure and the thermodegradation behavior of both poly(methyl methacrylate)-co-poly(3-tri(methoxysilyil)propyl methacrylate) polymer modified with silyl groups and of intercalated poly(methyl methacrylate)-co-poly(3- tri(methoxysilyil)propyl methacrylate)/Cloisite 15A™ nanocomposite have been in situ probed. The structural feature were comparatively studied by Fourier transform infrared spectroscopy (FTIR), 13C and 29Si nuclear magnetic resonance (NMR), and small angle X-ray scattering (SAXS) measurements. The intercalation of polymer in the interlayer galleries was evidenced by the increment of the basal distance from 31 to 45 Å. The variation of this interlayer distance as function of temperature was followed by in situ SAXS. Pristine polymer decomposition pathway depends on the atmosphere, presenting two steps under air and three under N2. The nanocomposites are more stable than polymer, and this thermal improvement is proportional to the clay loading. The experimental results indicate that clay nanoparticles play several different roles in polymer stabilization, among them, diffusion barrier, charring, and suppression of degradation steps by chemical reactions between polymer and clay. Charring is atmosphere dependent, occurring more pronounced under air. © 2012 Society of Plastics Engineers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objectives: This study aimed to compare the micro-tensile bond strength of methacrylate resin systems to a silorane-based restorative system on dentin after 24 hours and six months water storage. Material and Methods: The restorative systems Adper Single Bond 2/Filtek Z350 (ASB), Clearfil SE Bond/Z350 (CF), Adper SE Plus/Z350 (ASEP) and P90 Adhesive System/Filtek P90 (P90) were applied on flat dentin surfaces of 20 third molars (n=5). The restored teeth were sectioned perpendicularly to the bonding interface to obtain sticks (0.8 mm2) to be tested after 24 hours (24 h) and 6 months (6 m) of water storage, in a universal testing machine at 0.5 mm/min. The data was analyzed via two-way Analysis of Variance/Bonferroni post hoc tests at 5% global significance. Results: Overall outcomes did not indicate a statistical difference for the resin systems (p=0.26) nor time (p=0.62). No interaction between material × time was detected (p=0.28). Mean standard-deviation in MPa at 24 h and 6 m were: ASB 31.38 (4.53) and 30.06 (1.95), CF 34.26 (3.47) and 32.75 (4.18), ASEP 29.54 (4.14) and 33.47 (2.47), P90 30.27 (2.03) and 31.34 (2.19). Conclusions: The silorane-based system showed a similar performance to methacrylate-based materials on dentin. All systems were stable in terms of bond strength up to 6 month of water storage.