956 resultados para Meteorological satellite
Resumo:
The United States National Ice Center (NIC) provides weekly ice analyses of the Arctic and Antarctic using information from ice reconnaissance, ship reports and high-resolution satellite imagery. In cloud-covered areas and regions lacking imagery, the higher-resolution sources are augmented by ice concentrations derived from Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSMII) passive-microwave imagery. However, the SSMII-derived ice concentrations are limited by low resolution and uncertainties in thin-ice regions. Ongoing research at NIC is attempting to improve the utility of these SSMII products for operational sea-ice analyses. The refinements of operational algorithms may also aid future scientific studies. Here we discuss an evaluation of the standard operational ice-concentration algorithm, Cal/Val, with a possible alternative, a modified NASA Team algorithm. The modified algorithm compares favorably with CallVal and is a substantial improvement over the standard NASA Team algorithm in thin-ice regions that are of particular interest to operational activities.
Resumo:
In this paper, nighttime light data are suggested as a proxy for spatial distribution of vehicles running in urban and nearby areas. Nighttime lights focus on human activities, in contrast to traditional Earth observing systems that focus on natural systems. It is the human activity being visible in the form of brightness of nocturnal lights. Two available nighttime lights dataset were used in this work. The first one was provided by the U.S. Air Force Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS), henceforth, DMSO-OLS. The second one is the NASA-NOAA Suomi National Polar-orbiting Polar-orbiting Partnership (NPP) satellite, henceforth, Suomi-NPP. To validate the new proposed methodology, hundreds of urban areas of South America were analyzed in a high degree of resolution. The results of this study showed that night-time lights are very well correlated with vehicle fleet, population, and impervious surfaces but with strong spatial variability. The results of this study suggest a better understanding of the human activities in the context of a vehicular-based city conception.
Resumo:
El objetivo del presente trabajo fue determinar la Evapotranspiración real (ETR) a nivel regional utilizando la información del satélite meteorológico NOAA-AVHRR y comparar los resultados obtenidos con los calculados a partir de un modelo de simulación de balance hídrico. Para la estimación de la ETR se analizaron 30 imágenes que abarcan el oasis Norte de Mendoza. Con la información de los canales C1 (Visible) y C2 (IRC) se obtuvo el índice verde normalizado (NDVI), a través del cual se siguió la evolución anual de la vegetación y con la correspondiente al Infrarrojo térmico (C4 y C5) se calculó la Temperatura de superficie (Ts) por el método Split - Windows Luego se vinculó la Ts calculada por teledetección con la temperatura del aire (Ta), para finalmente calcular la suma acumulada de las diferencias entre Ts y Ta, conocida como SDD (stress degree day) que permite estimar globalmente las características de stress hídrico a nivel regional. Conociendo (Ts-Ta) se estimó la ETR a partir de la radiación neta y de los coeficientes A y B que se estimaron según las características de la cobertura vegetal, aplicando una relación simplificada a partir del balance de energía, desarrollado por Jackson (1977) y Seguin (1983) según la ecuación: ETR = Rn + A -B ( Ts - Ta ) Posteriormente, se incluyó en los cálculos los valores de Emisividad y se hizo variar el coeficiente B de acuerdo a la ocupación del suelo en cada uno de los polígonos en que fue dividida el área de estudio. En la etapa final se compararon estadísticamente los datos de ETR estimados por los distintos métodos con los simulados por el modelo y se obtuvo como conclusión final que: la estimación de la ETR a nivel regional mediante datos satelitales, se adapta muy bien a la mayoría de los casos y es sencilla de calcular, por lo que la metodología desarrollada es fácilmente extrapolable a otros oasis de la región.
Resumo:
Nighttime satellite imagery from the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) has a unique capability to observe nocturnal light emissions from sources including cities, wild fires, and gas flares. Data from the DMSP OLS is used in a wide range of studies including mapping urban areas, estimating informal economies, and estimating urban populations. Given the extensive and increasing list of applications a repeatable method for assessing geolocation accuracy, performing inter-calibration, and defining the minimum detectable brightness would be beneficial. An array of portable lights was designed and taken to multiple field sites known to have no other light sources. The lights were operated during nighttime overpasses by the DMSP OLS and observed in the imagery. A first estimate of the minimum detectable brightness is presented based on the field experiments conducted. An assessment of the geolocation accuracy was performed by measuring the distance between the GPS measured location of the lights and the observed location in the imagery. A systematic shift was observed and the mean distance was measured at 2.9km. A method for in situ radiance calibration of the DMSP OLS using a ground based light source as an active target is presented. The wattage of light used by the active target strongly correlates with the signal measured by the DMSP OLS. This approach can be used to enhance our ability to make inter-temporal and inter-satellite comparisons of DMSP OLS imagery. Exploring the possibility of establishing a permanent active target for the calibration of nocturnal imaging systems is recommended. The methods used to assess the minimum detectable brightness, assess the geolocation accuracy, and build inter-calibration models lay the ground work for assessing the energy expended on light emitted into the sky at night. An estimate of the total energy consumed to light the night sky globally is presented.
River basin surveillance using remotely sensed data: a water resources information management system
Resumo:
This thesis describes the development of an operational river basin water resources information management system. The river or drainage basin is the fundamental unit of the system; in both the modelling and prediction of hydrological processes, and in the monitoring of the effect of catchment management policies. A primary concern of the study is the collection of sufficient and sufficiently accurate information to model hydrological processes. Remote sensing, in combination with conventional point source measurement, can be a valuable source of information, but is often overlooked by hydrologists, due to the cost of acquisition and processing. This thesis describes a number of cost effective methods of acquiring remotely sensed imagery, from airborne video survey to real time ingestion of meteorological satellite data. Inexpensive micro-computer systems and peripherals are used throughout to process and manipulate the data. Spatial information systems provide a means of integrating these data with topographic and thematic cartographic data, and historical records. For the system to have any real potential the data must be stored in a readily accessible format and be easily manipulated within the database. The design of efficient man-machine interfaces and the use of software enginering methodologies are therefore included in this thesis as a major part of the design of the system. The use of low cost technologies, from micro-computers to video cameras, enables the introduction of water resources information management systems into developing countries where the potential benefits are greatest.
Resumo:
The distribution and intensity of a bloom of the toxic cyanobacterium, Microcystis aeruginosa, in western Lake Erie was characterized using a combination of satellite ocean-color imagery, field data, and meteorological observations. The bloom was first identified by satellite on 14 August 2008 and persisted for more than 2 months. The distribution and intensity of the bloom was estimated using a satellite algorithm that is sensitive to near-surface concentrations of M. aeruginosa. Increases in both area and intensity were most pronounced for wind stress less than 0.05 Pa. Area increased while intensity did not change for wind stresses of 0.05–0.1 Pa, and both decreased for wind stress greater than 0.1 Pa. The recovery in intensity at the surface after strong wind events indicated that high wind stress mixed the bloom through the water column and that it returned to the surface once mixing stopped. This interaction is consistent with the understanding of the buoyancy of these blooms. Cloud cover (reduced light) may have a weak influence on intensity during calm conditions. While water temperature remained greater than 15°C, the bloom intensified if there were calm conditions. For water temperature less than 15°C, the bloom subsided under similar conditions. As a result, wind stress needs to be considered when interpreting satellite imagery of these blooms.
Resumo:
As part of its Data User Element programme, the European Space Agency funded the GlobMODEL project which aimed at investigating the scientific, technical, and organizational issues associated with the use and exploitation of remotely-sensed observations, particularly from new sounders. A pilot study was performed as a "demonstrator" of the GlobMODEL idea, based on the use of new data, with a strong European heritage, not yet assimilated operationally. Two parallel assimilation experiments were performed, using either total column ozone or ozone profiles retrieved at the Royal Netherlands Meteorological Institute (KNMI) from the Ozone Monitoring Instrument (OMI). In both cases, the impact of assimilating OMI data in addition to the total ozone columns from the SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) on the European Centre for Medium Range Weather Forecasts (ECMWF) ozone analyses was assessed by means of independent measurements. We found that the impact of OMI total columns is mainly limited to the region between 20 and 80 hPa, and is particularly important at high latitudes in the Southern hemisphere where the stratospheric ozone transport and chemical depletion are generally difficult to model with accuracy. Furthermore, the assimilation experiments carried out in this work suggest that OMI DOAS (Differential Optical Absorption Spectroscopy) total ozone columns are on average larger than SCIAMACHY total columns by up to 3 DU, while OMI total columns derived from OMI ozone profiles are on average about 8 DU larger than SCIAMACHY total columns. At the same time, the demonstrator brought to light a number of issues related to the assimilation of atmospheric composition profiles, such as the shortcomings arising when the vertical resolution of the instrument is not properly accounted for in the assimilation. The GlobMODEL demonstrator accelerated scientific and operational utilization of new observations and its results - prompted ECMWF to start the operational assimilation of OMI total column ozone data.
Resumo:
The Taita Hills in southeastern Kenya form the northernmost part of Africa’s Eastern Arc Mountains, which have been identified by Conservation International as one of the top ten biodiversity hotspots on Earth. As with many areas of the developing world, over recent decades the Taita Hills have experienced significant population growth leading to associated major changes in land use and land cover (LULC), as well as escalating land degradation, particularly soil erosion. Multi-temporal medium resolution multispectral optical satellite data, such as imagery from the SPOT HRV, HRVIR, and HRG sensors, provides a valuable source of information for environmental monitoring and modelling at a landscape level at local and regional scales. However, utilization of multi-temporal SPOT data in quantitative remote sensing studies requires the removal of atmospheric effects and the derivation of surface reflectance factor. Furthermore, for areas of rugged terrain, such as the Taita Hills, topographic correction is necessary to derive comparable reflectance throughout a SPOT scene. Reliable monitoring of LULC change over time and modelling of land degradation and human population distribution and abundance are of crucial importance to sustainable development, natural resource management, biodiversity conservation, and understanding and mitigating climate change and its impacts. The main purpose of this thesis was to develop and validate enhanced processing of SPOT satellite imagery for use in environmental monitoring and modelling at a landscape level, in regions of the developing world with limited ancillary data availability. The Taita Hills formed the application study site, whilst the Helsinki metropolitan region was used as a control site for validation and assessment of the applied atmospheric correction techniques, where multiangular reflectance field measurements were taken and where horizontal visibility meteorological data concurrent with image acquisition were available. The proposed historical empirical line method (HELM) for absolute atmospheric correction was found to be the only applied technique that could derive surface reflectance factor within an RMSE of < 0.02 ps in the SPOT visible and near-infrared bands; an accuracy level identified as a benchmark for successful atmospheric correction. A multi-scale segmentation/object relationship modelling (MSS/ORM) approach was applied to map LULC in the Taita Hills from the multi-temporal SPOT imagery. This object-based procedure was shown to derive significant improvements over a uni-scale maximum-likelihood technique. The derived LULC data was used in combination with low cost GIS geospatial layers describing elevation, rainfall and soil type, to model degradation in the Taita Hills in the form of potential soil loss, utilizing the simple universal soil loss equation (USLE). Furthermore, human population distribution and abundance were modelled with satisfactory results using only SPOT and GIS derived data and non-Gaussian predictive modelling techniques. The SPOT derived LULC data was found to be unnecessary as a predictor because the first and second order image texture measurements had greater power to explain variation in dwelling unit occurrence and abundance. The ability of the procedures to be implemented locally in the developing world using low-cost or freely available data and software was considered. The techniques discussed in this thesis are considered equally applicable to other medium- and high-resolution optical satellite imagery, as well the utilized SPOT data.
Resumo:
Solar UV radiation is harmful for life on planet Earth, but fortunately the atmospheric oxygen and ozone absorb almost entirely the most energetic UVC radiation photons. However, part of the UVB radiation and much of the UVA radiation reaches the surface of the Earth, and affect human health, environment, materials and drive atmospheric and aquatic photochemical processes. In order to quantify these effects and processes there is a need for ground-based UV measurements and radiative transfer modeling to estimate the amounts of UV radiation reaching the biosphere. Satellite measurements with their near-global spatial coverage and long-term data conti-nuity offer an attractive option for estimation of the surface UV radiation. This work focuses on radiative transfer theory based methods used for estimation of the UV radiation reaching the surface of the Earth. The objectives of the thesis were to implement the surface UV algorithm originally developed at NASA Goddard Space Flight Center for estimation of the surface UV irradiance from the meas-urements of the Dutch-Finnish built Ozone Monitoring Instrument (OMI), to improve the original surface UV algorithm especially in relation with snow cover, to validate the OMI-derived daily surface UV doses against ground-based measurements, and to demonstrate how the satellite-derived surface UV data can be used to study the effects of the UV radiation. The thesis consists of seven original papers and a summary. The summary includes an introduction of the OMI instrument, a review of the methods used for modeling of the surface UV using satellite data as well as the con-clusions of the main results of the original papers. The first two papers describe the algorithm used for estimation of the surface UV amounts from the OMI measurements as well as the unique Very Fast Delivery processing system developed for processing of the OMI data received at the Sodankylä satellite data centre. The third and the fourth papers present algorithm improvements related to the surface UV albedo of the snow-covered land. Fifth paper presents the results of the comparison of the OMI-derived daily erythemal doses with those calculated from the ground-based measurement data. It gives an estimate of the expected accuracy of the OMI-derived sur-face UV doses for various atmospheric and other conditions, and discusses the causes of the differences between the satellite-derived and ground-based data. The last two papers demonstrate the use of the satellite-derived sur-face UV data. Sixth paper presents an assessment of the photochemical decomposition rates in aquatic environment. Seventh paper presents use of satellite-derived daily surface UV doses for planning of the outdoor material weathering tests.
Resumo:
In meteorology, observations and forecasts of a wide range of phenomena for example, snow, clouds, hail, fog, and tornados can be categorical, that is, they can only have discrete values (e.g., "snow" and "no snow"). Concentrating on satellite-based snow and cloud analyses, this thesis explores methods that have been developed for evaluation of categorical products and analyses. Different algorithms for satellite products generate different results; sometimes the differences are subtle, sometimes all too visible. In addition to differences between algorithms, the satellite products are influenced by physical processes and conditions, such as diurnal and seasonal variation in solar radiation, topography, and land use. The analysis of satellite-based snow cover analyses from NOAA, NASA, and EUMETSAT, and snow analyses for numerical weather prediction models from FMI and ECMWF was complicated by the fact that we did not have the true knowledge of snow extent, and we were forced simply to measure the agreement between different products. The Sammon mapping, a multidimensional scaling method, was then used to visualize the differences between different products. The trustworthiness of the results for cloud analyses [EUMETSAT Meteorological Products Extraction Facility cloud mask (MPEF), together with the Nowcasting Satellite Application Facility (SAFNWC) cloud masks provided by Météo-France (SAFNWC/MSG) and the Swedish Meteorological and Hydrological Institute (SAFNWC/PPS)] compared with ceilometers of the Helsinki Testbed was estimated by constructing confidence intervals (CIs). Bootstrapping, a statistical resampling method, was used to construct CIs, especially in the presence of spatial and temporal correlation. The reference data for validation are constantly in short supply. In general, the needs of a particular project drive the requirements for evaluation, for example, for the accuracy and the timeliness of the particular data and methods. In this vein, we discuss tentatively how data provided by general public, e.g., photos shared on the Internet photo-sharing service Flickr, can be used as a new source for validation. Results show that they are of reasonable quality and their use for case studies can be warmly recommended. Last, the use of cluster analysis on meteorological in-situ measurements was explored. The Autoclass algorithm was used to construct compact representations of synoptic conditions of fog at Finnish airports.
Resumo:
Using remotely sensed Tropical Rainfall Measuring Mission (TRMM) 3B42 rainfall and topographic data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Digital Elevation Model (DEM), the impact of oroghraphical aspects such as topography, spatial variability of elevation and altitude of apexes are examined to investigate capacious summer monsoon rainfall over the Western Ghats (WG) of India. TRMM 3B42 v7 rainfall data is validated with Indian Meteorological Department (IMD) gridded rainfall data at 0.5 degrees resolution over the WG. The analysis of spatial pattern of monsoon rainfall with orography of the WG ascertains that the grade of orographic precipitation depends mainly on topography of the mountain barrier followed by steepness of windward side slope and altitude of the mountain. Longer and broader, i.e. cascaded topography, elevated summits and gradually increasing slopes impel the enhancement in precipitation. Comparing topography of various states of the WG, it has been observed that windward side of Karnataka receives intense rainfall in the WG during summer monsoon. It has been observed that the rainfall is enhanced before the peak of the mountain and confined up to the height about 800m over the WG. In addition to this, the spatial distribution of heavy and very heavy rainfall events in the last 14 years has also been explored. Heavy and very heavy rain events on this hilly terrain are categorized with a threshold of precipitation (R) in the range 150>R>120mmday(-1) and exceeding 150mmday(-1) using probability distribution of TRMM 3B42 v7 rainfall. The areas which are prone to heavy precipitation are identified. The study would help policy makers to manage the hazard scenario and, to improve weather predictions on mountainous terrain of the WG.
Resumo:
The objective of spatial downscaling strategies is to increase the information content of coarse datasets at smaller scales. In the case of quantitative precipitation estimation (QPE) for hydrological applications, the goal is to close the scale gap between the spatial resolution of coarse datasets (e.g., gridded satellite precipitation products at resolution L × L) and the high resolution (l × l; L»l) necessary to capture the spatial features that determine spatial variability of water flows and water stores in the landscape. In essence, the downscaling process consists of weaving subgrid-scale heterogeneity over a desired range of wavelengths in the original field. The defining question is, which properties, statistical and otherwise, of the target field (the known observable at the desired spatial resolution) should be matched, with the caveat that downscaling methods be as a general as possible and therefore ideally without case-specific constraints and/or calibration requirements? Here, the attention is focused on two simple fractal downscaling methods using iterated functions systems (IFS) and fractal Brownian surfaces (FBS) that meet this requirement. The two methods were applied to disaggregate spatially 27 summertime convective storms in the central United States during 2007 at three consecutive times (1800, 2100, and 0000 UTC, thus 81 fields overall) from the Tropical Rainfall Measuring Mission (TRMM) version 6 (V6) 3B42 precipitation product (~25-km grid spacing) to the same resolution as the NCEP stage IV products (~4-km grid spacing). Results from bilinear interpolation are used as the control. A fundamental distinction between IFS and FBS is that the latter implies a distribution of downscaled fields and thus an ensemble solution, whereas the former provides a single solution. The downscaling effectiveness is assessed using fractal measures (the spectral exponent β, fractal dimension D, Hurst coefficient H, and roughness amplitude R) and traditional operational scores statistics scores [false alarm rate (FR), probability of detection (PD), threat score (TS), and Heidke skill score (HSS)], as well as bias and the root-mean-square error (RMSE). The results show that both IFS and FBS fractal interpolation perform well with regard to operational skill scores, and they meet the additional requirement of generating structurally consistent fields. Furthermore, confidence intervals can be directly generated from the FBS ensemble. The results were used to diagnose errors relevant for hydrometeorological applications, in particular a spatial displacement with characteristic length of at least 50 km (2500 km2) in the location of peak rainfall intensities for the cases studied. © 2010 American Meteorological Society.
Resumo:
Observations of Earth from space have been made for over 40 years and have contributed to advances in many aspects of climate science. However, attempts to exploit this wealth of data are often hampered by a lack of homogeneity and continuity and by insufficient understanding of the products and their uncertainties. There is, therefore, a need to reassess and reprocess satellite datasets to maximize their usefulness for climate science. The European Space Agency has responded to this need by establishing the Climate Change Initiative (CCI). The CCI will create new climate data records for (currently) 13 essential climate variables (ECVs) and make these open and easily accessible to all. Each ECV project works closely with users to produce time series from the available satellite observations relevant to users' needs. A climate modeling users' group provides a climate system perspective and a forum to bring the data and modeling communities together. This paper presents the CCI program. It outlines its benefit and presents approaches and challenges for each ECV project, covering clouds, aerosols, ozone, greenhouse gases, sea surface temperature, ocean color, sea level, sea ice, land cover, fire, glaciers, soil moisture, and ice sheets. It also discusses how the CCI approach may contribute to defining and shaping future developments in Earth observation for climate science.