963 resultados para Metal Complex
Resumo:
Evolution can increase the complexity of matter by self-organization into helical architectures, the best example being the DNA double helix. One common aspect, apparently shared by most of these architectures, is the presence of covalent bonds within the helix backbone. Here, we report the unprecedented crystal structures of a metal complex that self-organizes into a continuous double helical structure, assembled by non-covalent building blocks. Built up solely by weak stacking interactions, this alternating tread stairs-like double helical assembly mimics the DNA double helix structure. Starting from a racemic mixture in aqueous solution, the ruthenium(II) polypyridyl complex forms two polymorphic structures of a left-handed double helical assembly of only the Λ-enantiomer. The stacking of the helices is different in both polymorphs: a crossed woodpile structure versus a parallel columnar stacking.
Resumo:
Dissertação de mestrado, Qualidade em Análises, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015
Resumo:
In this thesis we report the synthsis and characterisation of new transition metal complexes of Pd(II),Cu(II),Ru(II) and Ir(III) of Schiff bases derived from quinoxaline-2-carboxaldehyde/3-hydroxyquinoxaline-2-carboxaldehyde and 5-aminoindazole.6-aminoindazole or 8-aminoquinoline.The complexes have been characterised by spectral and analytical data.Pd(II) and Cu(II) form square planar complexes and Ru(III) and Ir(III) form ctahedral complexes with these Schiff bases.The DNA binding properties of theses synthesised complexes have been studied by various methods including electronic absoption spectroscopy,cyclic voltammetry,different pulse voltammetry and circular dichroism spectra were used.Gel electrophoresis experiments were also performed to investigate the DNA cleavage of theses complexes.Furthermore Ru(III) and Ir(III) complexes find application as oxidation and hydogenation catalsts. The studies on catalytic activities has been presented.The metal complexes presented in this thesis assure significance as they contribute to the development of new DNA binding agents and antibacterial and anticancer drugs.
Resumo:
In the present work,the chelating behaviour of thiosemicarbazones of a heterocyclic diketone, 2,6-diacetylpyridine is studied,with the aim of investigating the influence coordination exerts on their conformation and /or configuration, in connection with the nature of the metal and of the counter ion.The various possibilities like unsubstitution,ring incorporation at terminal nitrogen and condensation of one of the ketone group alone have been tried for ligand selection.Mainly first row transition metals like manganese,iron,nickel,copper,zinc and cadmium are studied.Metals like cobalt also were studied but could not result in fruitful isolation of the compound due to solubility problems.Different spectroscopic and characterization techniques have been utilized to reveal the nature of the metal and the ligands in coordinated metal complex.
Resumo:
Polymer supports are efficient reagents,substrates and catalysts and they are extensively used for carrying out reactions at controlled rates.Tailor-made polymer supports are highly versatile which have opened an excellent area of research.Now polymer supported chemistry is being exploited at an amazing rate and it seems to join the routine world of organic synthesis.Polymer supported ligands are found to be efficient complexing agents whose high selectivity enables the analysis and removal of heavy metal ions which are toxic to all the living organisms of land and sea.polymer supported membranes function as ion selective potentiometric sensors which allow the exchange of specific ions among other ions of the same charge.In this investigation three series of polymeric schiff bases and three series of metal complexes have been prepared.An attempt is done to develop optimum conditions for the removal of heavy metal ions using polymeric schiff bases.A novel copper sensor electrode have also been prepared from polymer supported metal complex.
Resumo:
Aqua complex ions of metals must have existed since the appearance of water on the earth, and the subsequent appearance of life depended on, and may even have resulted from the interaction of metal ions with organic molecules. Studies on the coordinating ability of metal ions with other molecules and anions culminated in the theories of/\lfred Werner. Thereon the progress in the studies of metal complex chemistry was rapid. Many factors, like the utility and economic importance of metal chemistry, the intrinsic interest _in many of the compounds and the intellectual challenge of the structural problems to be solved, have contributed to this rapid progress. X—ray diffraction studies further accelerated the progress. The work cited in this thesis was carried out by the author in the Department of Applied Chemistry during 2001-2004. The primary aim of these investigations was to synthesise and characterize some transition metal complexes of 2-benzoylpyridine N(4)-substituted thiosemicarbazones and to study the antimicrobial activities of the ligands and their metal complexes. The work is divided into eight chapters
Resumo:
In order to build up a multicomponent system able to perform useful light-induced functions, a dithienylethene-bridged heterodinuclear metal complex (Ru/Os) has been prepared. The compound was characterized and its photophysical properties studied in detail.
Resumo:
Synthesis and characterization of a new Pt(II)-mimosine complex are described. Elemental, mass spectrometry and thermal analyses for the complex are consistent with the formula [PtCl2(C8H10N2O4)]center dot 1.5H(2)O. C-13 NMR, N-15 NMR and infrared spectroscopy indicate coordination of the ligand to Pt(II) through the N and O atoms in a square-planar geometry. The final residue after thermal treatment was identified as metallic Pt. The complex is soluble in dimethylsulfoxide.
Resumo:
Langmuir-Blodgett (LB) technique is a powerful tool to fabricate ultrathin films with highly ordered structures and controllable molecular array for efficient energy and electron transfer, allowing the construction of devices at molecular level. One method to obtain LB films consists in the mixture of classical film-forming molecules, for example Stearic Acid (SA) and functional metal complex. In this work NH(4)[Eu(bmdm)(4)], where the organic ligand bmdm is (butyl methoxy-dibenzoyl-methane) or (1-(4-methoxyphenyl)-3-(4-tert-butylphenyl)propane-1,3-dione) was used to build up Langmuir and LB films. Langmuir isotherms were obtained from (i) NH(4)[Eu(bmdm)(4)] complex and (ii) NH(4)[Eu(bmdm)(4)]/SA (1:1). Results indicated that (i) form multilayer structure; however the surface pressure was insufficient to obtain LB films, and (ii) can easily reproduce and build LB films. The dependence of number of layers in the UV absorption spectra suggest that the complex did not hydrolyze or show decomposition, UV spectral differences observed between the solution and the LB film indicate that the complex has a highly ordered arrangement in the film and the complex has an interaction with SA. Excitation spectra confirm a ligand-europium energy transfer mechanism. The transition lines of Eu(3+) ion were observed in emission spectra of all films, the photoluminescence spectra indicate a fluorescence enhanced effect with the number of LB layers. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Methionine sulfoxide complexes of iron(II) and copper(II) were synthesized and characterized by chemical and spectroscopic techniques. Elemental and atomic absorption analyses fit the compositions K2[Fe(metSO) 2]SO4 · H2O and [Cu(metSO)2] · H2O. Electronic absorption spectra of the complexes are typical of octahedral geometries. Infrared spectroscopy suggests coordination of the ligand to the metal through the carboxylate and sulfoxide groups. An EPR spectrum of the Cu(II) complex indicates tetragonal distortion of its octahedral symmetry. 57Fe Mössbauer parameters are also consistent with octahedral stereochemistry for the iron(II) complex. The complexes are very soluble in water.
Resumo:
A selection of nine macrocyclic Fe-III/II and Co-III/II transition metal complexes has been chosen to serve as a universal set of mediator-titrants in redox potentiometry of protein samples. The potential range spanned by these mediators is approximately from +300 to -700 mV vs the normal hydrogen electrode, which covers the range of most protein redox potentials accessible in aqueous solution. The complexes employed exhibit stability in both their oxidized and their reduced forms as well as pH-independent redox potentials within the range 6 < pH < 9. The mediators were also chosen on the basis of their very weak visible absorption maxima in both oxidation states, which will enable (for the first time) optical redox potentiometric titrations of proteins with relatively low extinction coefficients. This has previously been impractical with organic mediators, such as indoles, viologens and quinones, whose optical spectra interfere strongly with those of the protein.
Resumo:
The crystal structure and magnetic properties of a penta-coordinate iron(III) complex of pyridoxal-4-methylthiosemicarbazone, [Fe(Hmthpy)Cl](CHCHSO), are reported. The synthesised ligand and the metal complex were characterised by spectroscopic methods (H NMR, IR, and mass spectroscopy), elemental analysis, and single crystal X-ray diffraction. The complex crystallises as dark brown microcrystals. The crystal data determined at 100(1) K revealed a triclinic system, space group P over(1, ¯) (Z = 2). The ONSCl geometry around the iron(III) atom is intermediate between trigonal bipyramidal and square pyramidal (t = 0.40). The temperature dependence of the magnetic susceptibility (5-300 K) is consistent with a high spin Fe(III) ion (S = 5/2) exhibiting zero-field splitting. Interpretation of these data yielded: D = 0.34(1) cm and g = 2.078(3). © 2007 Elsevier B.V. All rights reserved.
Resumo:
In the structure of polymeric title compound, {[Co2(C7H2N2O7)2(H2O)6] . 2H2O}n from the reaction of 3,5-dinitrosalicylic acid with cobalt(II) acetate, both slightly distorted octahedral Co(II) centres have crystallographic inversion symmetry. The coordination sphere about one Co centre comprises four O donors from two bidentate chelate O(phenolate), O(carboxyl) and bridging dianionic ligands and two water molecules [Co-O range, 2.0249(11)-2.1386(14)A] while that about the second Co centre has four water molecules and two bridging carboxyl O donor atoms [Co-O range, 2.0690(14)-2.1364(11)A]. The coordinated water molecules as well as the water molecules of solvation give water-water and water-carboxyl hydrogen-bonding interactions in the three-dimensional framework structure.
Resumo:
Dye-sensitised solar cells have emerged as an important developing technology for low-cost solar energy conversion and a crucial element of these is the dye, responsible for light harvesting and control of interfacial electron-transfer processes.[1] A number of examples of dye exist in the literature which link a ruthenium polypyridyl complex to another platinum group metal complex such as Ru (II), Os (II), Re (I) or Rh (III) via a bridging ligand.[2-6] These systems are often referred to as heterosupramolecular triads when adsorbed on the surface of TiO2 as the semiconductor becomes an active component in the system. A number of problems can arise with these types of sensitisers, for example if a flexible linker, e.g. bis-pyridylethane, is used to couple the two complexes it can be hard to control the orientation of the whole dye. This may lead to the resultant dye cation hole being closer to the surface than desired, and hence the long-lived charge-separated state is not achieved. In addition the size of these dyes may be much larger than that of a mononuclear complex and can lead to poor pore filling on the TiO2 and lower dye coverage, leading to a lower efficiency cell.[7] Despite these issues, efficient charge-separation has been achieved with polynuclear complexes and a long-lived state on the millisecond timescale has been observed for a trinuclear ruthenium complex.[8]
Resumo:
In the structure of the title compound [Rb4(C9H6NO4)4(H~2~O)6]n, the asymmetric unit comprises four rubidium complex cations, two of which have an RbO7 coordination polyhedron with a monocapped distorted octahedral stereochemistry and two of which have a distorted RbO6 octahedral coordination. The bonding about both the seven-coordinate centres is similar, comprising one monodentate water molecule together with three bridging water molecules and three carboxylate O-atom donors, two of which are bridging. The environments about the six-coordinate cations are also similar, comprising a monodentate nitro O-atom donor, a bridging water molecule and four bridging carboxylate O-atom donors [overall Rb-O range, 2.849(2)-3.190(2)A]. The coordination leads to a two-dimensional polymeric structure extending parallel to (001), which is stabilized by interlayer water O-H...O hydrogen-bonding associations to water, carboxyl and nitro O-atom acceptors, together with weak inter-ring pi--pi interactions [minimum ring centroid separation = 3.5319(19)A].