956 resultados para Mesozoic-cenozoic tectonics


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In Portugal, there is an old tradition in using clayey materials for therapeutic purposes. They are applied in pelotherapy, at several beaches of the Atlantic coast in the form of clay-sea water mixtures (peloids) to treat skin and rheumatic diseases. During many generations, peloids have been applied without scienti c studies that prove their therapeutic validity. In the last decade, the Portuguese scienti c community has become increasingly more interested in assessing the properties that make clayey materials suitable for therapeutic purposes. The abundance of clayey formations and the established practices of medical hydrology in our country turned this interest into a new perspective of application. The studied materials include di erent clays (in age and origin) mainly collected from well-known Mesozoic-Cenozoic formations, in some cases outcropping at beaches where empirical applications occur. This thesis focus in the study of silt-clay fraction (< 63 m).To determine their suitability for therapy, compositional, physicochemical, technological, thermal and rheological properties were assessed. Conventional techniques (XRD, XRF and Sedigraph) were used to assess compositional features of silt-clay fraction. Electron microscopy (SEM, VPSEM, HREM) was used to study the micromorphology and composition of clay fraction (< 2 m). Physicochemical properties (cation exchange and speci c surface) were assessed using the Ammonium Acetate and BET methods. Technological properties (plasticity and abrasivity indices) were assessed using the Atterberg limits and Einlehner abrasion tests. Thermal properties (speci c heat and cooling kinetics) were estimated by DSC analysis and cooling tests. Pharmacotechnical tests (compressibility index, sediment volume and Brook eld viscosity) were used to assess the powder owability as well as the physical stability and viscosity of clay-water dispersions. We selected as suitable Portuguese clays for health applications the samples A-Pe, A-Be2, A-Sd, J-Fr , M-To, C-Lu1, C-Lu2, Pl-Ba, M-Ga and J-Ab because they represent safe materials, with an adequate composition, good technological, physicochemical and thermal properties for application, also presenting an adequate rheology when dispersed in water. Their most relevant characteristics are the high clay minerals content, abundant smectite, illite and kaolinite, and safe hazardous concentrations. They also showed moderate capacity to exchange Ca 2+, high plasticity, low abrasivity, high speci c heat and slow cooling kinetics. They evidenced fair powder owability and good potential to formulate viscous dispersions when stabilized. Because the majority of the assessed characteristics are in accordance with those presented by clays applied in European spas for pelotherapy, we considered this group of clays also suitable for medical hydrology treatments in Portuguese spas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Numerous studies have indicated that the Potiguar Basin is affected by Cenozoic tectonics. The reactivation of Cretaceous fault systems affect the post-rift units, witch include Neogene and overlying Quaternary sediments. In this context, the objectives of this thesis are the followings: (1) to characterize the effects of post-rift tectonics in the morphology of Apodi Mossoró-river valley located in the central portion of the Potiguar, (2) to characterize the drainage of the Apodi Mossoró river valley and investigate the behavior of their channels across active faults, and (3) to propose a geologic-geomorphological evolutionary model for the study area. This study used a geological and geomorphological mapping of the central part of the basin, with emphasis on the Quaternary record, luminescence dating of sediments, and geoelectric profiles of the area. The results reveal by maps of structural lineaments and drainage channels of the rivers form valleys that are affected by faults and folds. In Apodi-Mossoró valley, anomalies of channel morphology are associated with the deformation of the post-rift basin. These anomalies show the reactivation of major fault systems in the Potiguar Basin in Cenozoic. On a regional scale, can be seen through the vertical electric profiles that the Cenozoic tectonics is responsible for the elevation of a macro dome NE-SE-trending 70-km long and 50km wide and up to 270 above sea level. In this sector, the vertical electric profiles data show that the contact between the Cretaceous and Neogene rise more than 100m. This Is an important feature of inversion data obtained in this work showed that the deposits that cover the macro dome (Serra do Mel) have ages of 119 ka to 43 ka. In the river valley and surrounding areas Apodi-Mossoró ages vary between 319 ka and 2.7 ka. From these data it was possible to establish the correct geochronological posiconamento paleodepósitos of distinguishing them from the fluvial deposits of the Neogene (Barreiras Formation)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Geologia Regional - IGCE

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The distribution of paragenetic assemblages of trace and rare elements, as revealed by factor analysis (R-mode, Q-mode), the ratios of elements to Zr and the interpretation of these data in the context of the known mineralogy, lithology, and geology of the region, provide the bases for the outline of the geochemical history of sedimentation in the study area that forms the subject of this chapter. Two stages may be discerned. 1. Late-Middle Jurassic-Early Cretaceous (160-106? Ma). The sediments that accumulated in relatively shallow water (shelf) were predominantly clay, with dispersed sapropelic organic matter, plant fragments, pyrite, admixtures of acid-medium volcanic glass, and epigenetic crystals of gypsum. The bottom water layers of the basin are notably stagnant. The sediments are characterized by higher amounts of V, Zn, Cu, Cr, Rb, and Be associated with organic matter. Lower Cretaceous sediments, separated from those of the Upper Jurassic by a hiatus, accumulated in a deepened and enlarging basin. These Lower Cretaceous deposits are chemically similar to those of the Upper Jurassic, but contain diagenetic concentrations of Zn, Ni, and La. 2. Early-middle Albian (Unit 5)-middle Maestrichtian (1067-66.6Ma). The prevailing regime was that of an open ocean basin that tended to expand and deepen. During the second half of the early-middle Albian, the biogenic components Ba, Sr, and CaCO3 accumulated. By the end of this interval, Ti/Zr values had increased. In conjunction data on mineral composition, they testify to an outburst of basaltoid volcanism related to tectonic activity before an erosional hiatus (late Albian-Cenomanian). At the end of the Cenomanian-Turonian, residual deposits of predominantly clay sediments with relatively high amounts of Ti and Zr and associated rare alkalis (Li, Rb) accumulated. Clay sediments deposited during the Coniacian-Santonian were characterized by higher concentrations of Ti, Zr, Li, and Rb, by diagenetic carbonate phases of Ni, Zn, and La, and by sulphides and Fe-oxides with an admixture of Ni and Co. The latter half of the interval saw the deposition of fine basaltoid volcanoclastic material, diagenetically altered by zeolitization and carbonatization and enriched with Se, Pb, Ti, Sr, Ba, Y, and Yb. Sediments with a similar chemistry accumulated in the Campanian-middle Maestrichtian. Strong current activity preceding a global hiatus at the Mesozoic/Cenozoic boundary is reflected in both lower sedimentation rates and the presence of higher residual concentrations of Ti, Zr, Ba, Sr, and other elements studied in this chapter.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Some plates have illustrations on both sides.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

v. 1. Geologic processes and their results.--v.2. Earth history: Genesis--Paleozoic.--v.3 Earth history: Mesozoic, Cenozoic.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, we present results from teleseismic P-wave receiver functions (PRFs) obtained in Portugal, Western Iberia. A dense seismic station deployment conducted between 2010 and 2012, in the scope of the WILAS project and covering the entire country, allowed the most spatially extensive probing on the bulk crustal seismic properties of Portugal up to date. The application of the H-kappa stacking algorithm to the PRFs enabled us to estimate the crustal thickness (H) and the average crustal ratio of the P- and S-waves velocities V (p)/V (s) (kappa) for the region. Observations of Moho conversions indicate that this interface is relatively smooth with the crustal thickness ranging between 24 and 34 km, with an average of 30 km. The highest V (p)/V (s) values are found on the Mesozoic-Cenozoic crust beneath the western and southern coastal domain of Portugal, whereas the lowest values correspond to Palaeozoic crust underlying the remaining part of the subject area. An average V (p)/V (s) is found to be 1.72, ranging 1.63-1.86 across the study area, indicating a predominantly felsic composition. Overall, we systematically observe a decrease of V (p)/V (s) with increasing crustal thickness. Taken as a whole, our results indicate a clear distinction between the geological zones of the Variscan Iberian Massif in Portugal, the overall shape of the anomalies conditioned by the shape of the Ibero-Armorican Arc, and associated Late Paleozoic suture zones, and the Meso-Cenozoic basin associated with Atlantic rifting stages. Thickened crust (30-34 km) across the studied region may be inherited from continental collision during the Paleozoic Variscan orogeny. An anomalous crustal thinning to around 28 km is observed beneath the central part of the Central Iberian Zone and the eastern part of South Portuguese Zone.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main structural and geomorphological features along the Amazon River are closely associated with Mesozoic and Cenozoic tectonic events. The Mesozoic tectonic setting is characterised by the Amazonas and Marajó Basins, two distinct extensional segments. The Amazonas Basin is formed by NNE-SSW normal faults, which control the emplacement of dolerite dykes and deposition of the sedimentary pile. In the more intense tectonic phase (mid-Late Cretaceous), the depocentres were filled with fluvial sequences associated with axial drainage systems, which diverge from the Lower Tapajós Arch. During the next subsidence phase, probably in the Early Tertiary, and under low rate extension, much of the drainage systems reversed, directing the paleo-Amazon River to flow eastwards. The Marajó Basin encompasses NW-SE normal faults and NE-SW strike-slip faults, with the latter running almost parallel to the extensional axes. The normal faults controlled the deposition of thick rift and post-rift sequences and the emplacement of dolerite dykes. During the evolution of the basin, the shoulder (Gurupá Arch) became distinct, having been modelled by drainage systems strongly controlled by the trend of the strike-slip faults. The Arari Lineament, which marks the northwest boundary of the Marajó Basin, has been working as a linkage corridor between the paleo and modern Amazon River with the Atlantic Ocean. The neotectonic evolution since the Miocene comprises two sets of structural and geomorphological features. The older set (Miocene-Pliocene) encompasses two NE-trending transpressive domains and one NW-trending transtensive domain, which are linked to E-W and NE-SW right-lateral strike-slip systems. The transpressive domains display aligned hills controlled by reverse faults and folds, and are separated by large plains associated with pull-apart basins along clockwise strike-slip systems (e.g. Tupinambarana Lineament). Many changes were introduced in the landscape by the transpressive and transtensive structures, such as the blockage of major rivers, which evolved to river-lakes, transgression of the sea over a large area in the Marajó region, and uplift of long and narrow blocks that are oblique to the trend of the main channel. The younger set (Pliocene-Holocene) refers to two triple-arm systems of rift/rift/strike-slip and strike-slip/strike-slip/rift types, and two large transtensive segments, which have controlled the orientation of the modern drainage patterns. © 2001 Elsevier Science Ltd. All rights reserved.