532 resultados para Mesoporous Sapos
Resumo:
The thesis covers a systematic investigation on the synthesis of silica aerogels and microspheres with tailored porosity, at ambient conditions by varying the experimental parameters as well as using organic templates. Organically modified silica-gelatin and silica-chitosan hybrids were developed for the first time using alkylalkoxysilanes such as MTMS and VTMS. Application of novel silica-biopolymer antiwetting coatings on different substrates such as glass, leather and textile is also demonstrated in the thesis.
Resumo:
The present work describes the immobilization of α-amylase over well ordered mesoporous molecular sieve SBA-15 with different pore diameters synthesized by post synthesis treatment (PST) hydrothermally after reaction at 40°C. The materials were characterized by N 2 adsorption–desorption studies, small angle X-ray diffraction, scanning electron microscopy and high resolution transmission electron microscopy. Since α-amylase obtained from Bacillus subtilis has dimensions of 35 × 40 × 70 Å it is expected that the protein have access to the pore of SBA-15 (PST-120°C) with diameter 74 Å. The pore dimension is appropriate to prevent considerable leaching. The rate of adsorption of the enzyme on silica of various pore sizes revealed the influence of morphology, pore diameter, pore volume and pH.
Resumo:
To meet the challenges related to the chemical industry,development of efficient catalysts is necessary.The mesoporous materials like SBA-15 are considered as good catalyst candidates of 21st century.SBA-15 mesoporous materials are catalytically inactive,but allow the dispersion of catalytically active phases into the framework.So these materials can be considered as an interesting alternative for preparing catalytically active metal nanoparticles in-situ into it.In the present work various transition metals are incorporated to improve the catalytic activity of SBA-15 material.The fundamental aspects of the preparation,characterization and the activity studies are briefly viewed in this thesis. Systematic investigation of the physico-chemical properties and catalytic activity studies of the prepared materials were carried out and presented in this Study.
Resumo:
Mesoporous materials are of great interest to the materials community because of their potential applications for catalysis,separation of large molecules,medical implants,semiconductors,magnetoelectric devices.The thesis entitled 'Ordered Mesoporous Silica as supports for immobilization of Biocatalyst' presents how the pore size can be tuned without the loss in ordered structure for the entrapment of an industially important biocatalyst-amylase.Immobilization of enzymes on ordered mesoporous material has triggered new ooportunities for stabilizing enzymes with improved intrinsic and operational stabilities.
Resumo:
Relatively oxygen-free mesoporous cubic ZnS particles were synthesised via a facile solvo-hydrothermal route using a water–acetonitrile combination. Boosted UV emission at 349 nm is observed from the ZnS prepared by the solvo-hydrothermal route. The increased intensity of this UV emission is attributed to activation of whispering gallery modes of almost elliptical microstructures made of porous nanostructures.
Resumo:
Mesoporous silica nanoparticles provide a non-invasive and biocompatible delivery platform for a broad range of applications in therapeutics, pharmaceuticals and diagnosis. Additionally, mesoporous silica materials can be synthesized together with other nanomaterials to create new nanocomposites, opening up a wide variety of potential applications. The ready functionalization of silica materials makes them ideal candidates for bioapplications and catalysis. These properties of mesoporous silica like high surface areas, large pore volumes and ordered pore networks allow them for higher loading of drugs or biomolecules. Comparative studies have been made to evaluate the different procedures; much of the research to date has involved quick exploration of new methods and supports. Requirements for different enzymes may vary, and specific conditions may be needed for a particular application of an immobilized enzyme such as a highly rigid support. In this endeavor, mesoporous silica materials having different pore size were synthesized and easily modified with active functional groups and were evaluated for the immobilization of enzymes. In this work, Aspergillus niger glucoamylase, Bovine liver catalase, Candida rugosa lipase were immobilized onto support by adsorption and covalent binding. The structural properties of pure and immobilized supports are analyzed by various characterization techniques and are used for different reactions of industrial applications.
Resumo:
It is demonstrated that monodisperse magnetic FePt nanoparticle can be engineered into a protective dense silica layer, followed by concentric outer mesoporous silica layers with tailored -SH, -SO3H and -NH2 surface groups, these new materials can be used to capture heavy metal ions and DNA molecules from solution specifically by their internal or/and external functionalised surfaces by magnetic means.
Resumo:
Selected silicas were modified with the covalently bound ligand 2,6-bis(benzoxazoyl)pyridine (BBOP), equilibrated with copper(II) nitrate, then challenged with toxic vapour containing HCN (8000 mg m(-3) at 80% relative humidity). The modified SBA-15 material (Cu-BBOP-SBA-15) had an improved breakthrough time for HCN (36 min at a flow rate of 30 cm(3) min(-1)) when compared to the other siliceous materials prepared in this study, equating to a hydrogen cyanide capacity of 58 mg g(-1), which is close to a reference activated carbon adsorbent (24 min at 50 cm(3) min(-1)) that can trap 64 mg g(-1). The enhanced performance observed with Cu-BBOP-SBA-15 has been related to the greater accessibility of the functional groups, arising from the ordered nature of the interconnected porous network and large mesopores of 5.5 nm within the material modified with the Cu(II)-BBOP complex. Modified MCM-41 and MCM-48 materials (Cu-BBOP-MCM-41 and Cu-BBOP-MCM-48) were found to have lower hydrogen cyanide capacities (38 and 32 mg g(-1) respectively) than the Cu-BBOP-SBA-15 material owing to the restricted size of the pores (2.2 and <2 nm respectively). The materials with poor nano-structured ordering were found to have low hydrogen cyanide capacities, between 11 and 19 mg g(-1), most likely owing to limited accessibility of the functional groups. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
In this study, we carried out an investigation related to the determination of the anisotropy (b) of pores as well as the extent of microporosity (mic%) in various groups of nanostructured mesoporous materials. The mesoporous materials examined were fifteen samples belonging to the following groups of solids: MCM-48s, SBA-15s, SBA-16s, and mesoporous TiO2 anatases. The porosities of those materials were modified either during preparation or afterward by the addition of Cu(II) species and/or 3(5)-(2-pyridinyl) pyrazole (PyPzH) into the pores. The modification of porosity in each group took place to make possible the internal comparison of the b and mic% values within each group. The estimation of both the b and mic% parameters took place from the corresponding nitrogen adsorption-desorption isotherms. The new proposed method is able to detect a percentage of microporosity as low as a few percent, which is impossible by any of the methods used currently, without the use of any reference sample or standard isotherms. A meaningful inverse relationship is apparent between the b and mic% values, indicating that large values of b correspond to small values of mic%.
Resumo:
Using the technique of liquid crystal templating a rotating disc electrode (RDE) was modified with a high surface area mesoporous platinum film. The surface area of the electrode was characterised by acid voltammetry, and found to be very high (ca. 86 cm(2)). Acid characterisation of the electrode produced distorted voltammograms was interpreted as being due to the extremely large surface area which produced a combination of effects such as localised pH change within the pore environment and also ohmic drop effects. Acid voltammetry in the presence of two different types of surfactant, namely Tween 20 and Triton X-100, suggested antifouling properties associated with the mesoporous deposit. Further analysis of the modified electrode using a redox couple in solution showed typical RDE behaviour although extra capacitive currents were observed due to the large surface area of the electrode. The phenomenon of underpotential deposition was exploited for the purpose of anodic stripping voltammetry and results were compared with data collected for microelectrodes. Underpotential deposition of metal ions at the mesoporous RDE was found to be similar to that at conventional platinum electrodes and mesoporous microelectrodes although the rate of surface coverage was found to be slower at a mesoporous RDE. It was found that a mesoporous RDE forms a suitable system for quantification of silver ions in solution.
Resumo:
Nanofilm deposits of TiO2 nanoparticle phytates are formed on gold electrode surfaces by 'directed assembly' methods. Alternate exposure of a 3-mercapto-propionic acid modified gold surface to (i) a TiO2 sol and (ii) an aqueous phytic acid solution (pH 3) results in layer-by-layer formation of a mesoporous film. Ru(NH3)(6)(3+) is shown to strongly adsorb/accumulate into the mesoporous structure whilst remaining electrochemically active. Scanning the electrode potential into a sufficiently negative potential range allows the Ru(NH3)(6)(3+) complex to be reduced to Ru(NH3)(6)(2+) which undergoes immediate desorption. When applied to a gold coated quartz crystal microbalance (QCM) sensor, electrochemically driven adsorption and desorption processes in the mesoporous structure become directly detectable as a frequency response, which corresponds directly to a mass or density change in the membrane. The frequency response (at least for thin films) is proportional to the thickness of the mass-responsive film, which suggests good mechanical coupling between electrode and film. Based on this observation, a method for the amplified QCM detection of small mass/density changes is proposed by conducting measurements in rigid mesoporous structures. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Electrodeposition from a lyotropic liquid crystal template medium was used to produce nanostructured platinum microelectrodes with high specific surface area and high mass transport efficiency. Compared to polished and conventional platinized microelectrodes, well-ordered nanostructured platinum microelectrodes exhibited enhanced electrocatalytic properties for oxygen and ascorbic acid, whilst well-ordered nanostructured platinum microelectrodes offered improved electrocatalytic properties for oxygen reduction compared to disordered nanostructured platinum microelectrodes.
Resumo:
Using the technique of liquid crystal templating a series of high surface area mesoporous platinum microelectrodes was fabricated. The underpotential deposition of metal ions at such electrodes was found to be similar to that at conventional platinum electrodes. The phenomena of underpotential deposition, in combination with the intrinsic properties of mesoporous microelectrodes (i.e. a high surface area and efficient mass transport) was exploited for the purpose of anodic stripping voltammetry. In particular the underpotential deposition of Ag+, Pb2+ and Cu2+ ions was investigated and it was found that mesoporous microelectrodes were able to quantify the concentration of ions in solution down to the ppb range. The overall behaviour of the mesoporous electrodes was found to be superior to that of conventional microelectrodes and the effects of interference by surfactants were minimal.
Resumo:
It is demonstrated that monodisperse magnetic FePt nanoparticle can be engineered into a protective dense silica layer, followed by concentric outer mesoporous silica layers with tailored -SH, -SO3H and -NH2 surface groups, these new materials can be used to capture heavy metal ions and DNA molecules from solution specifically by their internal or/and external functionalised surfaces by magnetic means.