923 resultados para Mesoporous Nanocrystalline Zirconia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioactive, luminescent and mesoporous europium-doped hydroxyapatite (Eu:HAp) was successfully prepared through a simple one-step route using cationic surfactant as template. The obtained multifunctional hydroxyapatite was performed as a drug delivery carrier to investigate the drug storage/release properties using ibuprofen (IBU) as a model drug

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report two new heteroleptic polypyridyl ruthenium complexes, coded C101 and C102, with high molar extinction coefficients by extending the pi-conjugation of spectator ligands, with a motivation to enhance the optical absorptivity of mesoporous titania film and charge collection yield in a dye-sensitized solar cell. On the basis of this C101 sensitizer, several DSC benchmarks measured under the air mass 1.5 global sunlight have been reached.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanocrystalline ZrO2 fine powders were prepared via the Pechini-type sol-gel process followed by annealing from 500 to 1000 degrees C. The obtained ZrO2 samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), electron paramagnetic resonance (EPR), and photoluminescence spectra (PL), respectively. The phase transition process from tetragonal (T) to monoclinic (M) was observed for the nanocrystalline ZrO2 powders in the annealing process, accompanied by the change of their photoluminescence properties. The 500 degrees C annealed ZrO2, powder with tetragonal structure shows an intense whitish blue emission (lambda(max) = 425 nm) with a wide range of excitation (230-400 nm). This emission decreased in intensity after being annealed at 600 degrees C (T + M-ZrO2) and disappeared at 700 (T + M-ZrO2), 800 (T + M-ZrO2), and 900 degrees C (M-ZrO2). After further annealing at 1000 degrees C (M-ZrO2), a strong blue-green emission appeared again (lambda(max) = 470 nm).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanocrystalline 8YSZ (8 mol% yttria stabilized zirconia) bulk samples with grain sizes of 20-30 nm were synthesized by Sol-Gel method and then densified under a high pressure of 4.5 GPa at 1273 K for 10 min. The method led to the densification of 8YSZ to a relative density higher than 92% without grain growth. Fourier transmission Raman spectroscopy suggested that 8YSZ underwent a phase transition from the cubic phase to a phase mixture (tetragonal plus a trace of monoclinic) after the densification, which decreased the electrical conductivity to a certain degree as concluded from the impedance spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the crystal structures and phase transitions of nanocrystalline ZrO(2)-1 to -13 mol % Sc(2)O(3) by synchrotron X-ray powder diffraction and Raman spectroscopy. ZrO(2)-Sc(2)O(3) nanopowders were synthesized by using a stoichiometric nitrate-lysine get-combustion route. Calcination processes at 650 and at 850 degrees C yielded nanocrystalline materials with average crystallite sizes of (10 +/- 1) and (25 +/- 2) nm, respectively. Only metastable tetragonal forms and the cubic phase were identified, whereas the stable monoclinic and rhombohedral phases were not detected in the compositional range analyzed in this work. Differently from the results of investigations reported in the literature for ZrO(2)-Sc(2)O(3) materials with large crystallite sizes, this study demonstrates that, if the crystallite sizes are small enough (in the nanometric range), the metastable t ``-form of the tetragonal phase is retained. We have also determined the t`-t `` and t ``-cubic compositional boundaries at room temperature and analyzed these transitions at high temperature. Finally, using these results, we built up a metastable phase diagram for nanocrystalline compositionally homogeneous ZrO(2)-Sc(2)O(3) solid solutions that strongly differs from that previously determined from compositionally homogeneous ZrO(2)-Sc(2)O(3), Solid solutions with much larger crystallite sizes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By means of synchrotron X-ray powder diffraction (SXPD) and Raman spectroscopy, we have detected, in a series of nanocrystalline and compositionally homogeneous ZrO(2)-Y(2)O(3) solid solutions, the presence at room temperature of three different phases depending on Y(2)O(3) content, namely two tetragonal forms and the cubic phase. The studied materials, with average crystallite sizes within the range 7-10 nm, were synthesized by a nitrate-citrate gel-combustion process. The crystal structure of these phases was also investigated by SXPD. The results presented here indicate that the studied nanocrystalline ZrO(2)-Y(2)O(3) solid solutions exhibit the same phases reported in the literature for compositionally homogeneous materials containing larger (micro)crystals. The compositional boundaries between both tetragonal forms and between tetragonal and cubic phases were also determined. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium dioxide has been extensively used in photocatalysis and dye-sensitized solar cells, where control of the anatase-to-rutile phase transformation may allow the realization of more efficient devices exploiting the synergic effects at anatase/rutile interfaces. Thus, a systematic study showing the proof of concept of a dye-induced morphological transition and an anatase-to-rutile transition based on visible laser (532 nm) and nano/micro patterning of mesoporous anatase (Degussa P25 TiO(2)) films is described for the first time using a confocal Raman microscope. At low laser intensities, only the bleaching of the adsorbed N3 dye was observed. However, high enough temperatures to promote melting/densification processes and create a deep hole at the focus and an extensive phase transformation in the surrounding material were achieved using Is laser pulses of 25-41 mW/cm(2), in resonance with the MLCT band. The dye was shown to play a key role, being responsible for the absorption and efficient conversion of the laser light into heat. As a matter of fact, the dye is photothermally decomposed to amorphous carbon or to gaseous species (CO(x), NO(x), and H(2)O) under a N(2) or O(2) atmosphere, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presence of anatase and rutile domains on nanocrystalline films of P25 TiO(2), as well as the distinct coordination modes of carboxylates on those phases, were revealed by confocal Raman microscopy, a technique that showed to be suitable for imaging the chemical morphology down to submicrometric size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zirconia-based ceramics that retain their metastable tetragonal phase at room temperature are widely studied due to their excellent mechanical and electrical properties. When these materials are prepared from precursor nanopowders with high specific surface areas, this phase is retained in dense ceramic bodies. In this work, we present a morphological study of nanocrystalline ZrO2-2.8 mol% Y2O3 powders synthesized by the gel-combustion method, using different organic fuels - alanine, glycine, lysine and citric acid - and calcined at temperatures ranging from 873 to 1173 K. The nanopore structures were investigated by small-angle X-ray scattering. The experimental results indicate that nanopores in samples prepared with alanine, glycine and lysine have an essentially single-mode volume distribution for calcination temperatures up to 1073 K, while those calcined at 1173 K exhibit a more complex and wider volume distribution. The volume-weighted average of the nanopore radii monotonically increases with increasing calcination temperature. The samples prepared with citric acid exhibit a size distribution much wider than the others. The Brunauer-Emmett-Teller technique was used to determine specific surface area and X-ray diffraction, environmental scanning electron microscopy and transmission electron microscopy were also employed for a complete characterization of the samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface properties play an important role in understanding and controlling nanocrystalline materials. The accumulation of dopants on the surface, caused by surface segregation, can therefore significantly affect nanomaterials properties at low doping levels, offering a way to intentionally control nanoparticles features. In this work, we studied the distribution of chromium ions in SnO2 nanoparticles prepared by a liquid precursor route at moderate temperatures (500 degrees C). The powders were characterized by infrared spectroscopy, X-ray diffraction, (scanning) transmission electron microscopy, Electron Energy Loss Spectroscopy, and Mossbauer spectroscopy. We showed that this synthesis method induces a limited solid solution of chromium into SnO2 and a segregation of chromium to the surface. The s-electron density and symmetry of Sn located on the surface were significantly affected by the doping, while Sn located in the bulk remained unchanged. Chromium ions located on the surface and in the bulk showed distinct oxidation states, giving rise to the intense violet color of the nanoparticles suitable for pigment application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ordered mesoporous ZrO2-CeO2 mixed oxides are potential candidates for catalytic applications. These systems, used as anodes in solid oxide fuel cells (SOFC), may lead to better performance of SOFCs, due to an enhancement on surface area, aiming to achieve a lower working temperature. The aim of this studies is to evaluate the reduction capacity of Ni2+ to Ni in ZrO2-x(mol)%CeO2 (x=50 and 90) samples impregnated with 60(wt.)%NiO. The synthesis was made with Zr and Ce chloride precursors, HCl aqueous solution, Pluronic P123, NH4OH to adjust the pH (3-4) and a teflon autoclave to perform a hydrothermal treatment (80oC/48h). The samples were dried and calcined, until 540oC in N2 and 4 hours in air. The NiO impregnation was made with an ethanol dispersion of Ni(NO3)£6H2O. The powder was calcinated in air until 350oC for 2 hours. Temperature-resolved XANES data at the Ni K-edge were collected at the DXAS beam line of the LNLS in transmission mode, using a Si(111) monochromator and a CCD detector. Sample preparation consisted of mixing »6mg of the powder samples with boron nitride and pressing into pellets. The data were acquired during an experiment of temperature programmed reduction (TPR) under a 5% H2/He until 600oC and mixtures of 20%CH4:5%O2/He, at temperatures from 400 to 600oC. All the reactions were monitored with a mass spectrometer. The data was analyzed with a linear combination fit of 2 standards for each valence number using Athena software. The Ni K-edge experiments demonstrated that for both contents of CeO2, NiO embedded in the porous zirconia-ceria matrix reduces at lower temperatures than pure NiO, revealing that the ZrO2-CeO2 support improves the reduction of impregnated NiO. Ni was oxidized to NiO after all reactions with methane and oxygen. Hydrogenated carbonaceous species were detected, but under reducing conditions, the hydrocarbon compounds are removed. The reaction of total oxidation of methane CH4:O2 (1:2 ratio) was observed at lower temperatures (around 400oC) for both samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis of zirconia-based ordered mesoporous structures for catalytic applications is a research area under development. These systems are also potential candidates as anodes in intermediate temperature solid oxide fuel cells (it-SOFC) due to an enhancement on their surface area [1-4]. The structural features of mesoporous zirconia-ceria materials in combination with oxygen storage/release capacity (OSC) are crucial for various catalytic reactions. The direct use of hydrocarbons as fuel for the SOFC (instead of pure H2), without the necessity of reforming and purification reactors can improve global efficiency of these systems [4]. The X-ray diffraction data showed that ZrO2-x%CeO2 samples with x>50 are formed by a larger fraction of the cubic phase (spatial group Fm3m), while for x<50 the major crystalline structure is the tetragonal phase (spatial group P42/nmc). The crystallite size of the cubic phase increases with increase in ceria content. The tetragonal crystallite size decreases when ceria content increases. After impregnation, the Rietveld analysis showed a NiO content around 60wt.% for all samples. The lattice parameters for the ZrO2 tetragonal phase are lower for higher ZrO2 contents, while for all samples the cubic NiO and CeO2 parameters do not present changes. The calculated densities are higher for higher ceria content, as expected. The crystallite size of NiO are similar (~20nm) for all samples and 55nm for the NiO standard. Nitrogen adsorption experiments revealed a broader particle size distribution for higher CeO2 content. The superficial area values were around 35m2/g for all samples, the average pore diameter and pore volumes were higher when increasing ceria content. After NiO impregnation the particle size distribution was the same for all samples, with two pore sizes, the first around 3nm and a broader peak around 10nm. The superficial area increased to approximately 45m2/g for all samples, and the pore volume was also higher after impregnation and increased when ceria content increased. These results point up that the impregnation of NiO improves the textural characteristics of the pristine material. The complementary TEM/EDS images present a homogeneous coating of NiO particles over the ZrO2-x%CeO2 support, showing that these samples are excellent for catalysis applications. [1] D. Y. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science 279, 548-552 (1998). [2] C. Yu, Y. Yu, D. Zhao, Chem. Comm. 575-576 (2000). [3] A. Trovarelli, M. Boaro, E. Rocchini, C. de Leitenburg, G. Dolcetti, J. Alloys Compd. 323-324 (2001) 584-591. [4] S. Larrondo, M. A. Vidal, B. Irigoyen, A. F. Craievich, D. G. Lamas, I. O. Fábregas, et al. Catal. Today 107–108 (2005) 53-59.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CexZr1-xO2 (0.5 ≤ x ≤ 0.9) were synthesized with Zr and Ce chloride precursors, using the triblock copolymer Pluronic P123 and HCl (2 mol/L). The pH adjustment was performed in two ways: synthesis A used 11.4 mL of a NH4OH solution added at once to the initial mixture, composed by metal precursors and template in HCl; synthesis B was done by dripping slowly until the change of pH value (between 3 and 6). In this work, CexZr1-xO2 samples synthesized by these two processes are compared. The effects of pH values in materials characteristics were also evaluated. These samples were analysed by X-Ray Diffraction (XRD) with Rietveld refinement, and Nitrogen Adsorption/Desorption. In both processes, the studied materials presented two crystalline phases of CexZr1-xO2 solid solution: cubic and tetragonal. The synthesis A also presented a tetragonal phase of ZrO2. The average crystallite size and the Brunauer- Emmett-Teller (BET) surface area are bigger in process A. Both processes give samples with a mesoporous structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Il presente lavoro di tesi riguarda la sintesi di nanopolveri allumina-zirconia, seguendo tre differenti metodologie (sintesi per coprecipitazione, sintesi con il metodo dei citrati, sintesi idrotermale assistita da microonde) e il trattamento termico (calcinazione) delle polveri ottenute, mediante tecniche di riscaldamento convenzionali ed alternative (microonde). Lo scopo del lavoro è consistito nell’individuare, tra le tecniche esaminate, quella più idonea e conveniente, per la preparazione di nanopolveri cristalline 95 mol% Al2O3 – 5 mol% ZrO2 e nell’esaminare gli effetti che la calcinazione condotta con le microonde, ha sulle caratteristiche finali delle polveri, rispetto ai trattamenti termici convenzionali. I risultati ottenuti al termine del lavoro hanno evidenziato che, tra le tecniche di sintesi esaminate, la sintesi idrotermale assistita da microonde, risulta il metodo più indicato e che, il trattamento termico eseguito con le microonde, risulta di gran lunga vantaggioso rispetto a quello convenzionale. La sintesi idrotermale assistita da microonde consente di ottenere polveri nano cristalline poco agglomerate, che possono essere facilmente disaggregate e con caratteristiche microstrutturali del tutto peculiari. L’utilizzo di tale tecnica permette, già dopo la sintesi a 200°C/2ore, di avere ossido di zirconio, mentre per ottenere gli ossidi di alluminio, è sufficiente un ulteriore trattamento termico a basse temperature e di breve durata (400°C/ 5 min). Si è osservato, inoltre, che il trattamento termico condotto con le microonde comporta la formazione delle fasi cristalline desiderate (ossidi di alluminio e zirconio), impiegando (come per la sintesi) tempi e temperature significativamente ridotti. L’esposizione delle polveri per tempi ridotti e a temperature più basse consente di evitare la formazione di aggregati duri nelle nanopolveri finali e di contrastare il manifestarsi di fenomeni di accrescimento di grani, preservando così la “nanostruttura” delle polveri e le sue caratteristiche proprietà.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, nanoporous nickel oxide was synthesized using anionic surfactant assembly method. Structure characterizations show that this nickel oxide possesses partly-ordered mesoporous structure with nanocrystalline pore wall. The formation mechanism of wormlike nanoporous structure is ascribed to the quasi-reverse micelle system formed by ternary phases of SDS (sodium dodecyl sulfate)/urea/water. Cyclic voltammetry shows that these nickel oxide samples possess both good capacitive behavior due to its unique nanoporous structure and very high specific capacitance due to its high surface area with electrochemical activity.