921 resultados para Meson photoproduction in-medium effects intranuclear cascade
Resumo:
Pure cultures of Haliphthoros philippinensis, isolated from infected Penaeus monodon larvae, were exposed for 24 hours to varying concentrations of antifungal agents. The efficiency of each agent to inhibit sporulation and mycelial growth was measured. Effects on P. monodon eggs and larvae were also investigated. It is concluded that preliminary bioassay of larval tolerance to the suggested effective doses should always be made prior to prophylaxix or therapeutic applications.
Resumo:
We calculate the in-medium nucleon-nucleon scattering cross sections from the G-matrix using the Dirac-Brueckner-Hartree-Fock (DBHF) approach. And we investigate the influence of the different representations of the G-matrix to the cross sections, the difference of which is mainly from the different effective masses.
Resumo:
Probing in-medium nucleon-nucleon (NN) cross section sigma(1)(NN)(alpha) in heavy ion collisions has been investigated by means of the isospin-dependent quantum molecular dynamics (IQMD) with the isospin- and momentum- dependent interaction (IMDI(tau)). It is found that there are the very obvious medium effect and the sensitive isospin- dependence of nuclear stopping R on the in-medium NN cross section sigma(1)(NN)(alpha) in the nuclear reactions induced by halo-neutron projectile and the same-mass stable projectile. However, R induced by the neutron-halo projectile is obviously lower than that induced by the corresponding stable projectile. In particular, there is a very obvious dependence of R on the medium effect of sigma(1)(NN)(alpha) in the whole beam energy region for the above two kinds of projectiles. Therefore, the comparison between the results of R's in the reactions induced by the neutron-halo projectile and the corresponding same-mass stable projectile is a more favourable probe for extracting the information of sigma(1)(NN)(alpha) because of adding a new judgement.
Resumo:
Based on the relativistic chiral effective field theory, we study the effective mass of the Delta-resonance in medium by investigating the self-energy of the Delta-resonance related to the pi N decay channel in symmetric nuclear matter. We find that the effective mass of Delta-resonance decreases evidently with increasing nuclear density rho. In our calculation, we also consider the influence of the shifts of the nucleon mass, pion mass and its decay constant due to the restoration of chiral symmetry in medium. The results are roughly consistent with the data given by Lawrence Berkeley National Laboratory.
Resumo:
Influences of the isospin-dependent in-medium nucleon nucleon cross-section (sigma(iso)(NN) and momentum-dependent interaction (MDI) on the isoscaling parameter a are investigated for two central collisions Ca-40 +Ca-40 and Ca-60+ Ca-60. These collisions are with isospin dependent quantum molecular dynamics in the beam energy region from 40 to 60 MeV/nucleon. The isotope yield ratio R-21 (N, Z) for the above two central collisions depends exponentially on the neutron number N and proton number Z of isotopes, with an isoscaling. In particular, the isospin-dependent (sigma(iso)(NN) and MDI induce an obvious de crease of the isoscaling parameter a. The mechanism of the decreases of a by both sigma(iso)(NN) and MDI are studied respectively.
Resumo:
We present a numerical study of shear viscosity and thermal conductivity of symmetric nuclear matter, pure neutron matter, and beta-stable nuclear matter, in the framework of the Brueckner theory. The calculation of in-medium cross sections and nucleon effective masses is performed with a consistent two- and three-body interaction. The investigation covers a wide baryon density range as needed in the applications to neutron stars. The results for the transport coefficients in beta-stable nuclear matter are used to make preliminary predictions on the damping time scales of nonradial modes in neutron stars.