936 resultados para Mercy killing
Resumo:
One of the important temporal stages of radiation action in cellular systems is the chemical phase, where oxygen fixation reactions compete with chemical repair reactions involving reducing agents such as GSH. Using the gas explosion technique it is possible to follow the kinetics of these fast (> 1 ms) reactions in intact cells. We have compared the chemical repair kinetics of the oxygen-dependent free radical precursors leading to DNA single-strand and double-strand breaks, measured using filter elution techniques, with those leading to cell killing in V79 cells. The chemical repair rates for DNA dsb (670s-1 at pH 7.2 and 380s-1 at pH 9.6) and cell killing (530s-1) were similar. This is in agreement with the important role of DNA dsb in radiation induced cell lethality. The rate for DNA ssb precursors was significantly slower (210s-1). The difference in rate between DNA ssb and dsb precursors may be explained on the basis of a dsb free radical precursor consisting of a paired radical, one radical on each strand. The instantaneous probability of one or other of these radicals being chemically repaired and not proceeding to form a dsb will be twice that of a ssb radical precursor. This agrees well with the concept of locally multiply damaged sites (LMDS) produced from clusters of ionizations in DNA (Ward 1985).
Resumo:
Chinese hamster V79 fibroblasts were irradiated in the gas explosion apparatus and the chemical repair rates of the oxygen-dependent free radical precursors of DNA double-strand breaks (dsb) and lethal lesions measured using filter elution (pH 9.6) and a clonogenic assay. Depletion of cellular GSH levels, from 4.16 fmol/cell to 0.05 fmol/cell, by treatment with buthionine sulphoximine (50 mumol dm-3; 18 h), led to sensitization as regards DNA dsb induction and cell killing. This was evident at all time settings but was particularly pronounced when the oxygen shot was given 1 ms after the irradiation pulse. A detailed analysis of the chemical repair kinetics showed that depletion of GSH led to a reduction in the first-order rate constant for dsb precursors from 385 s-1 to 144 s-1, and for lethal lesion precursors from 533 s-1 to 165 s-1. This is generally consistent with the role of GSH in the repair-fixation model of radiation damage at the critical DNA lesions. However, the reduction in chemical repair rate was not proportional to the severe thiol depletion (down to almost-equal-to 1% for GSH) and a residual repair capacity remained (almost-equal-to 30%). This was found not to be due to compartmentalization of residual GSH in the nucleus, as the repair rate for dsb precursors in isolated nuclei, washed virtually free of GSH, was identical to that found in GSH-depleted cells (144 s-1), also the OER remained substantially above unity. This suggests that other reducing agents may have a role to play in the chemical repair of oxygen-dependent damage. One possible candidate is the significant level of protein sulphydryls present in isolated nuclei.
Resumo:
Despite the much vaunted triumph of human rights, amnesties continue to be a frequently used technique of post-conflict transitional justice. For many critics, they are synonymous with unaccountability and injustice. This article argues that despite the rhetoric, there is no universal duty to prosecute under international law and that issues of selectivity and proportionality present serious challenges to the retributive rationale for punishment in international justice. It contends that many of the assumptions concerning the deterrent effect in the field are also oversold and poorly theorized. It also suggests that appropriately designed restorative amnesties can be both lawful and effective as routes to truth recovery, reconciliation, and a range of other peacemaking goals. Rather than mere instruments of impunity, amnesties should instead be seen as important institutions in the governance of mercy, the reassertion of state sovereignty and, if properly constituted, the return of law to a previously lawless domain.
Resumo:
The relative susceptibilities of capsulate and non- capsulate variants of Bacteroides fragilis to serum and phagocytic killing were investigated. The capsule of B. fragilis did not confer resistance to serum killing. Phagocytic killing of non- capsulate B. fragilis occurred at bacterial concentrations of 1 X 10(6) and 1 X 10(7) cfu/ml. Capsulate B. fragilis organisms were also phagocytosed and killed at a concentration of 1 X 10(6) cfu/ml, but phagocytosis and killing were impaired at a concentration of 1 X 10(7) cfu/ml.
Resumo:
The world has experienced a public-health miracle in the past half century, as cleaner water, new health technologies, better diet and a host of other improvements have sharply reduced mortality and extended life expectancy in poor countries by as much as 20 years. A substantial portion of those gains has been realized through improvements in infant and child survival. However, the increase in income that was both a cause and effect of this miracle brought with it a new and ironic threat: a steep rise in non-communicable diseases (NCDs) like heart ailments and cancer.
Resumo:
Influential voices have argued for a sociology which acknowledges the way we are co-constituted with a range of non-human species as part of the condition of life on this planet. Despite this, sociology has generally retained a conception of the social that is centred on the human. This paper argues for the inclusion of non-human animals in sociological agendas, focusing on the emerging field of the sociology of violence. It examines the institutions and processes through which non-human animals are subjected to different forms of violence, most notably, mass killing.The practice of killing animals is routine,normative,institutionalized and globalized.The scale of killing is historically unprecedented and the numbers killed are enormous. The paper argues that this killing of non-humans raises questions around inequal- ities and intersectionality, human relations with other species, the embedding of violence in everyday practices and links between micro and macro analyses. These are questions with which the new sociology of violence might engage.
Resumo:
BACKGROUND: CD19 is a B cell lineage specific surface receptor whose broad expression, from pro-B cells to early plasma cells, makes it an attractive target for the immunotherapy of B cell malignancies. In this study we present the generation of a novel humanized anti-CD19 monoclonal antibody (mAb), GBR 401, and investigate its therapeutic potential on human B cell malignancies. METHODS: GBR 401 was partially defucosylated in order to enhance its cytotoxic function. We analyzed the in vitro depleting effects of GBR 401 against B cell lines and primary malignant B cells from patients in the presence or in absence of purified NK cells isolated from healthy donors. In vivo, the antibody dependent cellular cytotoxicity (ADCC) efficacy of GBR 401 was assessed in a B cell depletion model consisting of SCID mice injected with healthy human donor PBMC, and a malignant B cell depletion model where SCID mice are xenografted with both primary human B-CLL tumors and heterologous human NK cells. Furthermore, the anti-tumor activity of GBR 401 was also evaluated in a xenochimeric mouse model of human Burkitt lymphoma using mice xenografted intravenously with Raji cells. Pharmacological inhibition tests were used to characterize the mechanism of the cell death induced by GBR 401. RESULTS: GBR 401 exerts a potent in vitro and in vivo cytotoxic activity against primary samples from patients representing various B-cell malignancies. GBR 401 elicits a markedly higher level of ADCC on primary malignant B cells when compared to fucosylated similar mAb and to Rituximab, the current anti-CD20 mAb standard immunotherapeutic treatment for B cell malignancies, showing killing at 500 times lower concentrations. Of interest, GBR 401 also exhibits a potent direct killing effect in different malignant B cell lines that involves homotypic aggregation mediated by actin relocalization. CONCLUSION: These results contribute to consolidate clinical interest in developing GBR 401 for treatment of hematopoietic B cell malignancies, particularly for patients refractory to anti-CD20 mAb therapies.
Resumo:
It is widely accepted that antibody responses against the human parasitic pathogen Plasmodium falciparum protect the host from the rigors of severe malaria and death. However, there is a continuing need for the development of in vitro correlate assays of immune protection. To this end, the capacity of human monoclonal and polyclonal antibodies in eliciting phagocytosis and parasite growth inhibition via Fcγ receptor-dependent mechanisms was explored. In examining the extent to which sequence diversity in merozoite surface protein 2 (MSP2) results in the evasion of antibody responses, an unexpectedly high level of heterologous function was measured for allele-specific human antibodies. The dependence on Fcγ receptors for opsonic phagocytosis and monocyte-mediated antibody-dependent parasite inhibition was demonstrated by the mutation of the Fc domain of monoclonal antibodies against both MSP2 and a novel vaccine candidate, peptide 27 from the gene PFF0165c. The described flow cytometry-based functional assays are expected to be useful for assessing immunity in naturally infected and vaccinated individuals and for prioritizing among blood-stage antigens for inclusion in blood-stage vaccines.