970 resultados para Memory consolidation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several research lines show that sleep favors memory consolidation and learning. It has been proposed that the cognitive role of sleep is derived from a global scaling of synaptic weights, able to homeostatically restore the ability to learn new things, erasing memories overnight. This phenomenon is typical of slow-wave sleep (SWS) and characterized by non-Hebbian mechanisms, i.e., mechanisms independent of synchronous neuronal activity. Another view holds that sleep also triggers the specific enhancement of synaptic connections, carrying out the embossing of certain mnemonic traces within a lattice of synaptic weights rescaled each night. Such an embossing is understood as the combination of Hebbian and non-Hebbian mechanisms, capable of increasing and decreasing respectively the synaptic weights in complementary circuits, leading to selective memory improvement and a restructuring of synaptic configuration (SC) that can be crucial for the generation of new behaviors ( insights ). The empirical findings indicate that initiation of Hebbian plasticity during sleep occurs in the transition of the SWS to the stage of rapid eye movement (REM), possibly due to the significant differences between the firing rates regimes of the stages and the up-regulation of factors involved in longterm synaptic plasticity. In this study the theories of homeostasis and embossing were compared using an artificial neural network (ANN) fed with action potentials recorded in the hippocampus of rats during the sleep-wake cycle. In the simulation in which the ANN did not apply the long-term plasticity mechanisms during sleep (SWS-transition REM), the synaptic weights distribution was re-scaled inexorably, for its mean value proportional to the input firing rate, erasing the synaptic weights pattern that had been established initially. In contrast, when the long-term plasticity is modeled during the transition SWSREM, an increase of synaptic weights were observed in the range of initial/low values, redistributing effectively the weights in a way to reinforce a subset of synapses over time. The results suggest that a positive regulation coming from the long-term plasticity can completely change the role of sleep: its absence leads to forgetting; its presence leads to a positive mnemonic change

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Complex network analysis is a powerful tool into research of complex systems like brain networks. This work aims to describe the topological changes in neural functional connectivity networks of neocortex and hippocampus during slow-wave sleep (SWS) in animals submited to a novel experience exposure. Slow-wave sleep is an important sleep stage where occurs reverberations of electrical activities patterns of wakeness, playing a fundamental role in memory consolidation. Although its importance there s a lack of studies that characterize the topological dynamical of functional connectivity networks during that sleep stage. There s no studies that describe the topological modifications that novel exposure leads to this networks. We have observed that several topological properties have been modified after novel exposure and this modification remains for a long time. Major part of this changes in topological properties by novel exposure are related to fault tolerance

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Brain oscillation are not completely independent, but able to interact with each other through cross-frequency coupling (CFC) in at least four different ways: power-to-power, phase-to-phase, phase-to-frequency and phase-to-power. Recent evidence suggests that not only the rhythms per se, but also their interactions are involved in the execution of cognitive tasks, mainly those requiring selective attention, information flow and memory consolidation. It was recently proposed that fast gamma oscillations (60 150 Hz) convey spatial information from the medial entorhinal cortex to the CA1 region of the hippocampus by means of theta (4-12 Hz) phase coupling. Despite these findings, however, little is known about general characteristics of CFCs in several brain regions. In this work we recorded local field potentials using multielectrode arrays aimed at the CA1 region of the dorsal hippocampus for chronic recording. Cross-frequency coupling was evaluated by using comodulogram analysis, a CFC tool recently developted (Tort et al. 2008, Tort et al. 2010). All data analyses were performed using MATLAB (MathWorks Inc). Here we describe two functionally distinct oscillations within the fast gamma frequency range, both coupled to the theta rhythm during active exploration and REM sleep: an oscillation with peak activity at ~80 Hz, and a faster oscillation centered at ~140 Hz. The two oscillations are differentially modulated by the phase of theta depending on the CA1 layer; theta-80 Hz coupling is strongest at stratum lacunosum-moleculare, while theta-140 Hz coupling is strongest at stratum oriens-alveus. This laminar profile suggests that the ~80 Hz oscillation originates from entorhinal cortex inputs to deeper CA1 layers, while the ~140 Hz oscillation reflects CA1 activity in superficial layers. We further show that the ~140 Hz oscillation differs from sharp-wave associated ripple oscillations in several key characteristics. Our results demonstrate the existence of novel theta-associated high-frequency oscillations, and suggest a redefinition of fast gamma oscillations

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Episodic memory refers to the recollection of what, where and when a specific event occurred. Hippocampus is a key structure in this type of memory. Computational models suggest that the dentate gyrus (DG) and the CA3 hippocampal subregions are involved in pattern separation and the rapid acquisition of episodic memories, while CA1 is involved in memory consolidation. However there are few studies with animal models that access simultaneously the aspects ‗what-where-when . Recently, an object recognition episodic-like memory task in rodents was proposed. This task consists of two sample trials and a test phase. In sample trial one, the rat is exposed to four copies of an object. In sample trial two, one hour later, the rat is exposed to four copies of a different object. In the test phase, 1 h later, two copies of each of the objects previously used are presented. One copy of the object used in sample trial one is located in a different place, and therefore it is expected to be the most explored object.However, the short retention delay of the task narrows its applications. This study verifies if this task can be evoked after 24h and whether the pharmacological inactivation of the DG/CA3 and CA1 subregions could differentially impair the acquisition of the task described. Validation of the task with a longer interval (24h) was accomplished (animals showed spatiotemporal object discrimination and scopolamine (1 mg/kg, ip) injected pos-training impaired performance). Afterwards, the GABA agonist muscimol, (0,250 μg/μl; volume = 0,5 μl) or saline were injected in the hippocampal subregions fifteen minutes before training. Pre-training inactivation of the DG/CA3 subregions impaired the spatial discrimination of the objects (‗where ), while the temporal discrimination (‗when ) was preserved. Rats treated with muscimol in the CA1 subregion explored all the objects equally well, irrespective of place or presentation time. Our results corroborate the computational models that postulate a role for DG/CA3 in spatial pattern separation, and a role for CA1 in the consolidation process of different mnemonic episodes

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hebb postulated that memory could be stored thanks to the synchronous activity of many neurons, building a neural assembly. Knowing of the importance of the hippocampal structure to the formation of new explicit memories, we used electrophysiological recording of multiple neurons to access the relevance of rate coding from neural firing rates in comparison to the temporal coding of neural assemblies activity in the consolidation of an aversive memory in rats. Animals were trained at the discriminative avoidance task using a modified elevated plus-maze. During experimental sessions, slow wave sleep periods (SWS) were recorded. Our results show an increase in the identified neural assemblies activity during post-training SWS, but not for the neural firing rate. In summary, we demonstrate that for this particular task, the relevant information needed for a proper memory consolidation lies within the temporal patters of synchronized neural activity, not in its firing rate

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Anxiety is an emotional phenomenon, and normally it is interpreted as an adaptative behavior front to adversities. In its pathological form, anxiety can severely affect aspects related to the personal and professional life. Studies have shown a close relationship between anxiety disorders and aversive memory processing. Considering that the pharmacotherapy of anxiety disorders is still limited, innovative anxiolytic agents are needed. In this regard, neuropeptides systems are interesting therapeutic targets to the treatment of psychopathologies. Neuropeptide S (NPS), a 20-aminoacid peptide, is the endogenous ligand of a G-protein coupled receptor (NPSR), which has been reported to evoke hyperlocomotion, awakefull states, besides anxiolysis and memory improvements in rodents. This study aimed to investigate the effects of biperiden (BPR; an amnesic drug), diazepam (DZP; an anxiolytic drug) and NPS at three distinct times: pre-training, post-training, and pre-test, in order to assess anxiety and memory process in the same animal model. The elevated Tmaze (ETM) is an apparatus derived from the elevated plus-maze test, which consists of one enclosed and two open arms. The procedure is based on the avoidance of open spaces learned during training session, in which mice were exposed to the enclosed arm as many times as needed to stay 300 s. In the test session, memory is assessed by re-exposing the mouse to the enclosed arm and the latency to enter an open arm was recorded. When injected pre-training, BPR (1 mg/kg) impaired learning and memory processing; DZP (1 and 2 mg/kg) evoked anxiolysis, but only at the dose of 2 mg/kg impaired memory; and NPS 0.1 nmol induced anxiolysis without affecting memory. Post-training injection of DZP (2 mg/kg) or BPR (1 and 3 mg/kg) did not affect memory consolidation, while the post-trainning administration of NPS 1 nmol, but not 0.1 nmol, improved memory in mice. Indeed, pre-trainning administration of NPS 1 nmol did not prevent memory impairment elicited by BPR (2 mg/kg, injected before training). In the open field test, BPR 1 mg/kg and NPS 1 nmol induced hyperlocomotion in mice. In conclusion, the proposed ETM task is practical for the detection of the anxiolytic and amnesic effects of drugs. The anxiolytic and memory enhancement effects of NPS were detected in the ETM task, and reinforce the role of NPS system as an interesting therapeutic target to the treatment of anxiety disorders

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neuroscience is on a rise of discoveries. Its wide interdisciplinary approach facilitates a more complex understanding of the brain, covering various areas in depth. However, many phenomena that fascinate human kind are far from being fully elucidated, such as the formation of memories and sleep. In this study we investigated the role of the dopaminergic system in the process of memory consolidation and modulation of the phases of sleep-wake cycle. We used two groups of animals: wildtype mice and hiperdopaminergic mice, heterozygous for the gene encoding the dopamine transporter protein. We observed in wild-type mice that the partial blockade of the D2 dopamine receptor by the drug haloperidol caused deficits in memory consolidation for object recognition, as well as a significant reduction in the duration of rapid eye movement sleep (REM). We also found a mnemonic deficit without pharmacological intervention in hiperdopaminergic animals; this deficit was reversed with haloperidol. The results suggest that dopamine plays a key role in memory consolidation for object recognition. The data also support a functional relationship between the dopaminergic system and the modulation of REM sleep

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lithium (Li) is the first choice to treat bipolar disorder, a psychiatric illness characterized by mood oscillations between mania and depression. However, studies have demonstrated that this drug might influence mnemonic process due to its neuroprotector, antiapoptotic and neurogenic effects. The use of Li in the treatment of cognitive deficits caused by brain injury or neurodegenerative disorders have been widely studied, and this drug shows to be effective in preventing or even alleviating the memory impairment. The effects of Li on anxiety and depression are controversial and the relationship of the effects of lithium on memory, anxiety and depression remain unknown. In this context, this study aims to: evaluate the effects of acute and chronic administration of lithium carbonate in aversive memory and anxiety, simultaneously, using the plus maze discriminative avoidance task (PMDAT); test the antidepressant effect of the drug through the forced swimming test (FS) and analyze brainderived neurotrophic factor (BDNF) expression in structures related to memory and emotion. To evaluation of the acute effects, male Wistar rats were submitted to i.p. administration of lithium carbonate (50, 100 or 200 mg/kg) one hour before the training session (PMDAT) or lithium carbonate (50 or 100 mg/kg) one hour before the test session (FS). To evaluation of the chronic effects, the doses administered were 50 or 100 mg/kg or vehicle once a day for 21 days before the beginning of behavioral tasks (PMDAT and FS). Afterwards, the animals were euthanized and their brains removed and submitted to immunohistochemistry procedure to quantify BDNF. The animals that received acute treatment with 100 and 200 mg/kg of Li did not discriminated between the enclosed arms (aversive and non-aversive) in the training session of PMDAT, showing that these animal did not learned the task. This lack of discrimination was also observed in the test session, showing that the animals did not recall the aversive task. We also observed an increased exploration of the open arms of these same groups, indicating an anxiolytic effect. The same groups showed a reduction of locomotor activity, however, this effect does not seem to be related with the anxiolytic effect of the drug. Chronic treatment with Li did not promote alterations on learning or memory processes. Nevertheless, we observed a reduction of open arms exploration by animals treated with 50 mg/kg when compared to the other groups, showing an anxiogenic effect caused by this dose. This effect it is not related to locomotor alterations since there were no alterations in these parameters. Both acute and chronic treatment were ineffective in the FS. Chronic treatment with lithium was not able to modify BDNF expression in hippocampus, amygdala and pre-frontal cortex. These results suggest that acute administration of lithium promote impairments on learning in an aversive task, blocking the occurrence of memory consolidation and retrieval. The reduction of anxiety following acute treatment may have prevented the learning of the aversive task, as it has been found that optimum levels of anxiety are necessary for the occurrence of learning with emotional context. With continued, treatment the animals recover the ability to learn and recall the task. Indeed, they do not show differences in relation to control group, and the lack of alterations on BDNF expression corroborates this result. Possibly, the regimen of treatment used was not able to promote cognitive improvement. Li showed acute anxiolytic effect, however chronic administration 4 promoted the opposite effect. More studies are necessary to clarify the potential beneficial effect of Li on aversive memory

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The extent to which the hypothalamic-pituitary-adrenal axis is activated by short-term and long-term consequences of stress is still open to investigation. This study aimed to determine (i) the correlation between plasma corticosterone and exploratory behavior exhibited by rats subjected to the elevated plus maze (EPM) following different periods of social isolation, (ii) the effects of the corticosterone synthesis blocker, metyrapone, on the behavioral consequences of isolation, and (iii) whether corticosterone produces its effects through an action on the anterior cingulate cortex, area 1 (Cg1). Rats were subjected to 30-min, 2-h, 24-h, or 7-day isolation periods before EPM exposure and plasma corticosterone assessments. Isolation for longer periods of time produced greater anxiogenic-like effects on the EPM. However, stretched attend posture (SAP) and plasma corticosterone concentrations were increased significantly after 30 min of isolation. Among all of the behavioral categories measured in the EPM, only SAP positively correlated with plasma corticosterone. Metyrapone injected prior to the 24 h isolation period reversed the anxiogenic effects of isolation. Moreover, corticosterone injected into the Cg1 produced a selective increase in SAP. These findings indicate that risk assessment behavior induced by the action of corticosterone on Cg1 neurons initiates a cascade of defensive responses during exposure to stressors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is already known that progressive degeneration of cholinergic neurons in brain areas such as the hippocampus and the cortex leads to memory deficits, as observed in Alzheimer's disease. This work verified the effects of the infusion of amyloid-beta (A beta) peptide associated to an attentional rehearsal on the density of alpha 7 nicotinic cholinergic receptor (nAChR) in the brain of male Wistar rats. Animals received intracerebroventricular infusion of A beta or vehicle (control - C) and their attention was stimulated weekly (Stimulated A beta group: S-A beta and Stimulated Control group: SC) or not (Non-Stimulated A beta group: N-SA beta and Non-Stimulated Control group: N-SC), using an active avoidance apparatus. Conditioned avoidance responses (CAR) were registered. Chronic infusion of A beta caused a 37% reduction in CAR for N-SA beta. In S-A beta, this reduction was not observed. At the end, brains were extracted and autoradiography for alpha 7 nAChR was conducted using [I-125]-alpha-bungarotoxin. There was an increase in alpha 7 density in hippocampus, cortex and amygdala of SA beta animals, together with the memory preservation. In recent findings from our lab using mice infused with A beta and the alpha 7 antagonist methyllycaconitine, and stimulated weekly in the same apparatus, it was observed that memory maintenance was abolished. So, the increase in alpha 7 density in brain areas related to memory might be related to a participation of this receptor in the long-lasting change in synaptic plasticity, which is important to improve and maintain memory consolidation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: It is well known, since the pioneristic observation by Jenkins and Dallenbach (Am J Psychol 1924;35:605-12), that a period of sleep provides a specific advantage for the consolidation of newly acquired informations. Recent research about the possible enhancing effect of sleep on memory consolidation has focused on procedural memory (part of non-declarative memory system, according to Squire’s taxonomy), as it appears the memory sub-system for which the available data are more consistent. The acquisition of a procedural skill follows a typical time course, consisting in a substantial practice-dependent learning followed by a slow, off-line improvement. Sleep seems to play a critical role in promoting the process of slow learning, by consolidating memory traces and making them more stable and resistant to interferences. If sleep is critical for the consolidation of a procedural skill, then an alteration of the organization of sleep should result in a less effective consolidation, and therefore in a reduced memory performance. Such alteration can be experimentally induced, as in a deprivation protocol, or it can be naturally observed in some sleep disorders as, for example, in narcolepsy. In this research, a group of narcoleptic patients, and a group of matched healthy controls, were tested in two different procedural abilities, in order to better define the size and time course of sleep contribution to memory consolidation. Experimental Procedure: A Texture Discrimination Task (Karni & Sagi, Nature 1993;365:250-2) and a Finger Tapping Task (Walker et al., Neuron 2002;35:205-11) were administered to two indipendent samples of drug-naive patients with first-diagnosed narcolepsy with cataplexy (International Classification of Sleep Disorder 2nd ed., 2005), and two samples of matched healthy controls. In the Texture Discrimination task, subjects (n=22) had to learn to recognize a complex visual array on the screen of a personal computer, while in the Finger Tapping task (n=14) they had to press a numeric sequence on a standard keyboard, as quickly and accurately as possible. Three subsequent experimental sessions were scheduled for each partecipant, namely a training session, a first retrieval session the next day, and a second retrieval session one week later. To test for possible circadian effects on learning, half of the subjects performed the training session at 11 a.m. and half at 17 p.m. Performance at training session was taken as a measure of the practice-dependent learning, while performance of subsequent sessions were taken as a measure of the consolidation level achieved respectively after one and seven nights of sleep. Between training and first retrieval session, all participants spent a night in a sleep laboratory and underwent a polygraphic recording. Results and Discussion: In both experimental tasks, while healthy controls improved their performance after one night of undisturbed sleep, narcoleptic patients showed a non statistically significant learning. Despite this, at the second retrieval session either healthy controls and narcoleptics improved their skills. Narcoleptics improved relatively more than controls between first and second retrieval session in the texture discrimination ability, while their performance remained largely lower in the motor (FTT) ability. Sleep parameters showed a grater fragmentation in the sleep of the pathological group, and a different distribution of Stage 1 and 2 NREM sleep in the two groups, being thus consistent with the hypothesis of a lower consolidation power of sleep in narcoleptic patients. Moreover, REM density of the first part of the night of healthy subjects showed a significant correlation with the amount of improvement achieved at the first retrieval session in TDT task, supporting the hypothesis that REM sleep plays an important role in the consolidation of visuo-perceptual skills. Taken together, these results speak in favor of a slower, rather than lower consolidation of procedural skills in narcoleptic patients. Finally, an explanation of the results, based on the possible role of sleep in contrasting the interference provided by task repetition is proposed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aging is a physiological process characterized by a progressive decline of the “cellular homeostatic reserve”, refereed as the capability to respond suitably to exogenous and endogenous stressful stimuli. Due to their high energetic requests and post-mitotic nature, neurons are peculiarly susceptible to this phenomenon. However, the aged brain maintains a certain level of adaptive capacities and if properly stimulated may warrant a considerable functional recovery. Aim of the present research was to verify the plastic potentialities of the aging brain of rats subjected to two kind of exogenous stimuli: A) the replacement of the standard diet with a ketogenic regimen (the change forces the brain to use ketone bodies (KB) in alternative to glucose to satisfy the energetic needs) and B) a behavioural task able to induce the formation of inhibitory avoidance memory. A) Fifteen male Wistar rats of 19 months of age were divided into three groups (average body weight pair-matched), and fed for 8 weeks with different dietary regimens: i) diet containing 10% medium chain triglycerides (MCT); ii) diet containing 20% MCT; iii) standard commercial chow. Five young (5 months of age) and five old (26-27 months of age) animals fed with the standard diet were used as further controls. The following morphological parameters reflecting synaptic plasticity were evaluated in the stratum moleculare of the hippocampal CA1 region (SM CA1), in the outer molecular layer of the hippocampal dentate gyrus (OML DG), and in the granule cell layer of the cerebellar cortex (GCL-CCx): average area (S), numeric density (Nvs), and surface density (Sv) of synapses, and average volume (V), numeric density (Nvm), and volume density (Vv) of synaptic mitochondria. Moreover, succinic dehydrogenase (SDH) activity was cytochemically determined in Purkinje cells (PC) and V, Nvm, Vv, and cytochemical precipitate area/mitochondrial area (R) of SDH-positive mitochondria were evaluated. In SM CA1, MCT-KDs induced the early appearance of the morphological patterns typical of old animals: higher S and V, and lower Nvs and Nvm. On the contrary, in OML DG, Sv and Vv of MCT-KDs-fed rats were higher (as a result of higher Nvs and Nvm) vs. controls; these modifications are known to improve synaptic function and metabolic supply. The opposite effects of MCT-KDs might reflect the different susceptibility of these brain regions to the aging processes: OML DG is less vulnerable than SM CA1, and the reactivation of ketone bodies uptake and catabolism might occur more efficiently in this region, allowing the exploitation of their peculiar metabolic properties. In GCL-CCx, the results described a new scenario in comparison to that found in the hippocampal formation: 10%MCT-KD induced the early appearance of senescent patterns (decreased Nvs and Nvm; increased V), whereas 20%MCT-KD caused no changes. Since GCL-CCx is more vulnerable to age than DG, and less than CA1, these data further support the hypothesis that MCT-KDs effects in the aging brain critically depend on neuronal vulnerability to age, besides MCT percentage. Regarding PC, it was decided to evaluate only the metabolic effect of the dietetic regimen (20%MCT-KD) characterized by less side effects. KD counteracted age-related decrease in numeric density of SDH-positive mitochondria, and enhanced their energetic efficiency (R was significantly higher in MCT-KD-fed rats vs. all the controls). Since it is well known that Purkinje and dentate gyrus cells are less vulnerable to aging than CA1 neurons, these results corroborate our previous hypothesis. In conclusion, the A) experimental line provides the first evidence that morphological and functional parameters reflecting synaptic plasticity and mitochondrial metabolic competence may be modulated by MCT-KDs in the pre-senescent central nervous system, and that the effects may be heterogeneous in different brain regions. MCT-KDs seem to supply high energy metabolic intermediates and to be beneficial (“anti-aging”) for those neurons that maintain the capability to exploit them. This implies risks but also promising potentialities for the therapeutic use of these diets during aging B) Morphological parameters of synapses and synaptic mitochondria in SM CA1 were investigated in old (26-27 month-old) female Wistar rats following a single trial inhibitory avoidance task. In this memory protocol animals learn to avoid a dark compartment in which they received a mild, inescapable foot-shock. Rats were tested 3 and 6 or 9 hours after the training, divided into good and bad responders according to their performance (retention times above or below 100 s, respectively) and immediately sacrificed. Nvs, S, Sv, Nvm, V, and Vv were evaluated. In the good responder group, the numeric density of synapses and mitochondria was significantly higher and the average mitochondrial volume was significantly smaller 9 hours vs. 6 hours after the training. No significant differences were observed among bad responders. Thus, better performances in passive avoidance memory task are correlated with more efficient plastic remodeling of synaptic contacts and mitochondria in hippocampal CA1. These findings indicate that maintenance of synaptic plastic reactivity during aging is a critical requirement for preserving long-term memory consolidation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stress in der Post-Akquisitionsphase begünstigt die Gedächtniskonsolidierung emotional erregender Informationen. Das Zusammenspiel von noradrenerger Aktivierung und Cortisol auf Ebene der Amygdala ist hierbei von entscheidender Bedeutung. rnIn dieser Studie wird untersucht, ob dieser Effekt durch das Ausmaß der kardiovaskulären bzw. der subjektiv erlebten Stressreaktivität beeinflusst wird. 49 Probanden (Alter: 23.8 Jahre; 32 Frauen) wurden je 52 Gesichter, davon 50% mit ärgerlichem sowie 50 % mit glücklichem Ausdruck präsentiert. Sofort nach Akquisition wurde bei 30 Probanden akuter Stress durch den sozial evaluierten Kaltwassertest (SECPT; Eintauchen der dominanten Hand in eiskaltes Wasser für 3 Minuten unter Beobachtung) induziert, bei 19 Probanden wurde eine Kontrollprozedur ohne Stress durchgeführt. Die 30 Probanden der SECPT-Gruppe wurden post-hoc zum einen anhand der individuellen Blutdruckreaktivität und zum zweiten anhand der Stärke der subjektiv bewerteten Stressreaktivität per Mediansplit in zwei Subgrupen unterteilt (High Responder, Low Responder). rnDer erste Wiedererkennungstest fand 30 Minuten nach der Akquisitionsphase, ein weiterer 20 Stunden später statt. Zu den Testzeitpunkten wurden jeweils 26 der initial präsentierten Gesichter mit neutralem Gesichtsausdruck gezeigt sowie 26 neue neutrale Gesichter. rnDie Kontrollgruppe und die Gruppe der High Responder (basierend auf der kardiovaskulären Reaktivität) zeigten ein besseres Erinnerungsvermögen für die initial positiv präsentierten gesichter, wohingegen die Gruppe der Low Responder ein besseres Gedächtnis für die initial negativ präsentierten Gesichter aufwies. rnStress scheint abhängig von der Stärke der kardiovaskulären Reaktion zu valenzspezifischen Konsolidierungseffekten zu führen. Hierbei könnten viszerale Afferenzen z.B. der arteriellen Baroreflexe eine Rolle spielen. rn

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In der vorliegenden Arbeit wurden die durch Training induzierten motorischen Gedächtnisleistungen der Taufliege Drosophila melanogaster beim Überklettern von acht symmetrisch verteilten Lücken auf einem rotierenden Ring untersucht. Durch den auf sie einwirkenden optischen Fluss der vorbeiziehenden äußeren Umgebung wurden die Fliegen angeregt, diesem optomotorischen Reiz entgegenzuwirken und die Lücken laufend zu überqueren. Durch Training verbessert und langfristig gelernt wird die kompensatorische Lückenüberquerung X+ gegen die Rotation. In der aus diesem Training erhaltenen Lernkurve war eine überdurchschnittlich hohe Leistungsverbesserung nach einem einzigen Trainingslauf mit einem zeitlichen Bestand von ca. 40 Minuten abzulesen, um danach vom motorischen Gedächtnisspeicher trainierter Fliegen nicht mehr abgerufen werden zu können. Nach einer Ruhephase von einem bis mehreren Tagen wurden die Fliegen auf mögliche Langzeitlernleistungen untersucht und diese für verschiedene Intervalle nachgewiesen. Sowohl die Leistungsverbesserung während des Trainings, als auch der Lerneffekt nach 24h bleiben in mutanten rutabaga2080 sowie rut1 Fliegen aus. Betroffen ist das Gen der Adenylylzyklase I, ein Schlüsselprotein der cAMP-Signalkaskade, die u.a. im olfaktorischen und visuellen Lernen gebraucht wird. Damit ergab sich die Möglichkeit die motorischen Gedächtnisformen durch partielle Rettung zu kartieren. Die motorische Gedächtniskonsolidierung ist schlafabhängig. Wie sich herausstellte, benötigen WTB Fliegen nur eine Dunkelphase von 10h zwischen einem ersten Trainingslauf und einem Testlauf um signifikante Leistungssteigerungen zu erzielen. In weiterführenden Versuchen wurden die Fliegen nachts sowie tagsüber mit einer LED-Lampe oder in einer Dunkelkammer, mit einem Kreisschüttler oder einer Laborwippe depriviert, mit dem Ergebnis, dass nur jene Fliegen ihre Leistung signifikant gegenüber einem ersten Trainingslauf verbessern konnten, welche entweder ausschließlich der Dunkelheit ausgesetzt waren oder welchen die Möglichkeit gegeben wurde, ein Gedächtnis zunächst in einer natürlichen Schlafphase zu konsolidieren (21Uhr bis 7Uhr MEZ). In weiteren Experimenten wurden die experimentellen Bedingungen entweder während des Trainings oder des Tests auf eine Fliege und damit verbunden auf eine erst durch das Training mögliche motorische Gedächtniskonsolidierung einwirken zu können, untersucht. Dazu wurden die Experimentparameter Lückenweite, Rotationsrichtung des Lückenringes, Geschwindigkeit des Lückenringes sowie die Verteilung der acht Lücken auf dem Ring (symmetrisch, asymmetrisch) im Training oder beim Gedächtnisabruf im Testlauf verändert. Aus den Ergebnissen kann geschlussfolgert werden, dass die Lückenweite langzeitkonsolidiert wird, die Rotationsrichtung kurzzeitig abgespeichert wird und die Drehgeschwindigkeit motivierend auf die Fliegen wirkt. Die symmetrische Verteilung der Lücken auf dem Ring dient der Langzeitkonsolidierung und ist als Trainingseingang von hoher Wichtigkeit. Mit Hilfe verschiedener Paradigmen konnten die Leistungsverbesserungen der Fliegen bei Abruf eines Kurz- bzw. Langzeitgedächtnisses hochauflösend betrachtet werden (Transfer). Die Konzentration, mit der eine WTB Fliege eine motorische Aufgabe - die Überquerung von Lücken entgegengesetzt der Rotationsrichtung - durchführt, konnte mit Hilfe von Distraktoreizen bestimmt werden. Wie sich herausstellte, haben Distraktoren einen Einfluss auf die Erfolgsquote einer Überquerung, d.h. mit zunehmender Distraktionsstärke nahm die Wahrscheinlichkeit einer Lückenüberquerung ab. Die Ablenkungsreize wirkten sich weiterhin auf die Vermessung einer Lücke aus, in dem entweder "peering"-artigen Bewegungen im Training durchgeführt wurden oder je nach Reizstärke ausschließlich nur jene Lücken vermessen wurden, welche auch überquert werden sollten.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Numerous mRNA molecules are localized in regions of the dendrites of neurons, some moving along dendrites in response to synaptic activity. The proteins encoded by these RNAs have diverse functions, including participation in memory formation and long-term potentiation. Recent experiments have shown that a cytoplasmic RNA trafficking pathway described for oligodendrocytes also operates in neurons. Transported RNAs possess a cis-acting element that directs them to granules, which are transported along microtubules by the motor proteins kinesin and dynein. These RNA molecules are recruited to the cytoplasmic transport granules by cooperative interaction with a cognate trans-acting factor. mRNAs containing the 11-nucleotide A2RE11 or 21-nucleotide A2RE sequences bind heterogeneous nuclear ribonucleoproteins A2 and A3, which are abundant in the brain. Mutations in this cis-acting element that weaken its interaction with hnRNP A2 also interfere with RNA trafficking. Several dendritically localized mRNAs, including those encoding calcium-calmodulin-dependent protein kinase 11 a subunit and neurogranin, possess A2RE-like sequences, suggesting that they may be localized by interaction with these heterogeneous nuclear ribonucleoproteins. Calcium-calmodulin-dependent protein kinase 11 a subunit is of particular interest: Its RNA is transported in depolarized neurons, and the protein it encodes is essential for establishing long-term memory. Several other cis-acting sequences and trans-acting factors that participate in neuronal RNA localization have been discovered.