868 resultados para Membrane Proteins -- metabolism
Resumo:
Die transmembrane Potenzialdifferenz Δφm ist direkt mit der katalytischen Aktivität der Cytochrom c Oxidase (CcO) verknüpft. Die CcO ist das terminale Enzym (Komplex IV) in der Atmungskette der Mitochondrien. Das Enzym katalysiert die Reduktion von O2 zu 2 H2O. Dabei werden Elektronen vom natürlichen Substrat Cytochrom c zur CcO übertragen. Der Eleltronentransfer innerhalb der CcO ist an die Protonentranslokation über die Membran gekoppelt. Folglich bildet sich über der inneren Membrane der Mitochondrien eine Differenz in der Protonenkonzentration. Zusätzlich wird eine Potenzialdifferenz Δφm generiert.rnrnDas Transmembranpotenzial Δφm kann mit Hilfe der Fluoreszenzspektroskopie unter Einsatz eines potenzialemfindlichen Farbstoffs gemessen werden. Um quantitative Aussagen aus solchen Untersuchungen ableiten zu können, müssen zuvor Kalibrierungsmessungen am Membransystem durchgeführt werden.rnrnIn dieser Arbeit werden Kalibrierungsmessungen von Δφm in einer Modellmembrane mit inkorporiertem CcO vorgestellt. Dazu wurde ein biomimetisches Membransystem, die Proteinverankerte Doppelschicht (protein-tethered Bilayer Lipid Membrane, ptBLM), auf einem transparenten, leitfähigem Substrat (Indiumzinnoxid, ITO) entwickelt. ITO ermöglicht den simultanen Einsatz von elektrochemischen und Fluoreszenz- oder optischen wellenleiterspektroskopischen Methoden. Das Δφm in der ptBLM wurde durch extern angelegte, definierte elektrische Spannungen induziert. rnrnEine dünne Hydrogelschicht wurde als "soft cushion" für die ptBLM auf ITO eingesetzt. Das Polymernetzwerk enthält die NTA Funktionsgruppen zur orientierten Immobilisierung der CcO auf der Oberfläche der Hydrogels mit Hilfe der Ni-NTA Technik. Die ptBLM wurde nach der Immobilisierung der CcO mittels in-situ Dialyse gebildet. Elektrochemische Impedanzmessungen zeigten einen hohen elektrischen Widerstand (≈ 1 MΩ) der ptBLM. Optische Wellenleiterspektren (SPR / OWS) zeigten eine erhöhte Anisotropie des Systems nach der Bildung der Doppellipidschicht. Cyklovoltammetriemessungen von reduziertem Cytochrom c bestätigten die Aktivität der CcO in der Hydrogel-gestützten ptBLM. Das Membranpotenzial in der Hydrogel-gestützten ptBLM, induziert durch definierte elektrische Spannungen, wurde mit Hilfe der ratiometrischen Fluoreszenzspektroskopie gemessen. Referenzmessungen mit einer einfach verankerten Dopplellipidschicht (tBLM) lieferten einen Umrechnungsfaktor zwischen dem ratiometrischen Parameter Rn und dem Membranpotenzial (0,05 / 100 mV). Die Nachweisgrenze für das Membranpotenzial in einer Hydrogel-gestützten ptBLM lag bei ≈ 80 mV. Diese Daten dienen als gute Grundlage für künftige Untersuchungen des selbstgenerierten Δφm der CcO in einer ptBLM.
Resumo:
Fundamental biological processes such as cell-cell communication, signal transduction, molecular transport and energy conversion are performed by membrane proteins. These important proteins are studied best in their native environment, the lipid bilayer. The atomic force microscope (AFM) is the instrument of choice to determine the native surface structure, supramolecular organization, conformational changes and dynamics of membrane-embedded proteins under near-physiological conditions. In addition, membrane proteins are imaged at subnanometer resolution and at the single molecule level with the AFM. This review highlights the major advances and results achieved on reconstituted membrane proteins and native membranes as well as the recent developments of the AFM for imaging.
Resumo:
Moraxella catarrhalis is a major mucosal pathogen of the human respiratory tract both in children and in adults. Two subpopulations of this organism have been described that differ in 16S rRNA gene sequence and virulence traits. Three 16S rRNA types have been defined. 2-DE followed by protein identification by MS revealed significant differences in the outer membrane protein (OMP) patterns of each M. catarrhalis 16S rRNA type. Approximately 130 features were detected on the 2-DE map of each M. catarrhalis 16S rRNA type. However, only 50 features were expressed by all strains. Furthermore, direct profiling of isolated OMP using MALDI-TOF MS resulted in a characteristic spectral fingerprint for each 16S rRNA type. Fingerprints remained identical when intact cells instead of isolated OMP were analyzed. This finding suggests that the source of desorbed ions is the outer membrane. Based on the fingerprint we were able to assign 18 well-characterized clinical M. catarrhalis isolates to the correct subpopulation. Therefore, MALDI-TOF of intact M. catarrhalis provides a rapid and robust tool for M. catarrhalis strain typing that could be applied in epidemiological studies.
Resumo:
Moraxella catarrhalis is a major mucosal pathogen of the human respiratory tract, but the mucosal immune response directed against surface components of this organism has not been characterized in detail. The aim of this study was to investigate the salivary immunoglobulin A (IgA) response toward outer membrane proteins (OMP) of M. catarrhalis in healthy adults, the group of individuals least likely to be colonized and thus most likely to display mucosal immunity. Unstimulated saliva samples collected from 14 healthy adult volunteers were subjected to IgA immunoblot analysis with OMP preparations of M. catarrhalis strain O35E. Immunoblot analysis revealed a consistent pattern of IgA reactivity, with the appearance of five major bands located at >250, 200, 120, 80, and 60 kDa. Eleven (79%) of 14 saliva samples elicited reactivity to all five bands. Immunoblot analysis with a set of isogenic knockout mutants lacking the expression of individual OMP was used to determine the identities of OMP giving rise to IgA bands. Human saliva was shown consistently to exhibit IgA-binding activity for oligomeric UspA2 (>250 kDa), hemagglutinin (200 kDa), monomeric UspA1 (120 kDa), transferrin-binding protein B (TbpB), monomeric UspA2, CopB, and presumably OMP CD. TbpB, oligomeric UspA2, and CopB formed a cluster of bands at about 80 kDa. These data indicate that the human salivary IgA response is directed consistently against a small number of major OMP, some of which are presently considered vaccine candidates. The functional properties of these mucosal antibodies remain to be elucidated.
Resumo:
A novel large heterodimeric dermatan sulfate proteoglycan with core proteins of 460 and 300 kDa, respectively, had been described as a secretory product of human fetal skin fibroblasts (Breuer et al., J. Biol. Chem. 266, 13224-13232 (1991)). Pulse-chase experiments showed a preferential association of the proteoglycan with the cell membrane. Immunogold labeling indicated its localization in fibrils on the cell surface as well as in fibrillar extensions from the cell body. Immunofluorescence studies yielded a fibrillar and punctate staining pattern which was also seen in cultured human and porcine endothelial cells. Dot-like structures were observed in transformed human keratinocytes. Various immunocytochemical double-labeling experiments indicated a remarkable colocalization of the proteoglycan with fibronectin, laminin, perlecan, and type IV collagen whereas only occasionally a colocalization with chondroitin-6-sulfate was found. No evidence for an enrichment of the proteoglycan in vinculin-containing structures was obtained. These results suggest that the proteoglycan is a widely distributed macromolecule which can associate with basement membrane components. Preliminary findings in rat cornea supported this conclusion.
Resumo:
Purified membrane proteins are ternary complexes consisting of protein, lipid, and detergent. Information about the amounts of detergent and endogenous phospholipid molecules bound to purified membrane proteins is largely lacking. In this systematic study, three model membrane proteins of different oligomeric states were purified in nine different detergents at commonly used concentrations and characterized biochemically and biophysically. Detergent-binding capacities and phospholipid contents of the model proteins were determined and compared. The insights on ternary complexes obtained from the experimental results, when put into a general context, are summarized as follows. 1), The amount of detergent and 2) the amount of endogenous phospholipids bound to purified membrane proteins are dependent on the size of the hydrophobic lipid-accessible protein surface areas and the physicochemical properties of the detergents used. 3), The size of the detergent and lipid belt surrounding the hydrophobic lipid-accessible surface of purified membrane proteins can be tuned by the appropriate choice of detergent. 4), The detergents n-nonyl-β-D-glucopyranoside and Cymal-5 have exceptional delipidating effects on ternary complexes. 5), The types of endogenous phospholipids bound to membrane proteins can vary depending on the detergent used for solubilization and purification. 6), Furthermore, we demonstrate that size-exclusion chromatography can be a suitable method for estimating the molecular mass of ternary complexes. The findings presented suggest a strategy to control and tune the numbers of detergent and endogenous phospholipid molecules bound to membrane proteins. These two parameters are potentially important for the successul crystallization of membrane proteins for structure determination by crystallographic approaches.
Resumo:
Membrane proteins carry out functions such as nutrient uptake, ATP synthesis or transmembrane signal transduction. An increasing number of reports indicate that cellular processes are underpinned by regulated interactions between these proteins. Consequently, functional studies of these networks at a molecular level require co-reconstitution of the interacting components. Here, we report a SNARE protein-based method for incorporation of multiple membrane proteins into artificial membrane vesicles of well-defined composition, and for delivery of large water-soluble substrates into these vesicles. The approach is used for in vitro reconstruction of a fully functional bacterial respiratory chain from purified components. Furthermore, the method is used for functional incorporation of the entire F1F0 ATP synthase complex into native bacterial membranes from which this component had been genetically removed. The novel methodology offers a tool to investigate complex interaction networks between membrane-bound proteins at a molecular level, which is expected to generate functional insights into key cellular functions.
Resumo:
Membrane proteins carry out functions such as nutrient uptake, ATP synthesis or transmembrane signal transduction. An increasing number of reports indicate that cellular processes are underpinned by regulated interactions between these proteins. Consequently, functional studies of these networks at a molecular level require co-reconstitution of the interacting components. Here, we report a SNARE-protein based method for incorporation of multiple membrane proteins into membranes, and for delivery of large water-soluble substrates into closed membrane vesicles. The approach is used for in vitro reconstruction of a fully functional bacterial respiratory chain from purified components. Furthermore, the method is used for functional incorporation of the entire F1F0-ATP synthase complex into native bacterial membranes from which this component had been genetically removed. The novel methodology offers a tool to investigate complex interaction networks between membrane-bound proteins at a molecular level, which is expected to generate functional insights into key cellular functions.
Resumo:
The advent of single molecule fluorescence microscopy has allowed experimental molecular biophysics and biochemistry to transcend traditional ensemble measurements, where the behavior of individual proteins could not be precisely sampled. The recent explosion in popularity of new super-resolution and super-localization techniques coupled with technical advances in optical designs and fast highly sensitive cameras with single photon sensitivity and millisecond time resolution have made it possible to track key motions, reactions, and interactions of individual proteins with high temporal resolution and spatial resolution well beyond the diffraction limit. Within the purview of membrane proteins and ligand gated ion channels (LGICs), these outstanding advances in single molecule microscopy allow for the direct observation of discrete biochemical states and their fluctuation dynamics. Such observations are fundamentally important for understanding molecular-level mechanisms governing these systems. Examples reviewed here include the effects of allostery on the stoichiometry of ligand binding in the presence of fluorescent ligands; the observation of subdomain partitioning of membrane proteins due to microenvironment effects; and the use of single particle tracking experiments to elucidate characteristics of membrane protein diffusion and the direct measurement of thermodynamic properties, which govern the free energy landscape of protein dimerization. The review of such characteristic topics represents a snapshot of efforts to push the boundaries of fluorescence microscopy of membrane proteins to the absolute limit.
Resumo:
Oligomeric assembly of neurotransmitter transporters is a prerequisite for their export from the endoplasmic reticulum (ER) and their subsequent delivery to the neuronal synapse. We previously identified mutations, e.g., in the gamma-aminobutyric acid (GABA) transporter-1 (GAT1), which disrupted assembly and caused retention of the transporter in the ER. Using one representative mutant, GAT1-E101D, we showed here that ER retention was due to association of the transporter with the ER chaperone calnexin: interaction with calnexin led to accumulation of GAT1 in concentric bodies corresponding to previously described multilamellar ER-derived structures. The transmembrane domain of calnexin was necessary and sufficient to direct the protein into these concentric bodies. Both yellow fluorescent protein-tagged versions of wild-type GAT1 and of the GAT1-E101D mutant remained in disperse (i.e., non-aggregated) form in these concentric bodies, because fluorescence recovered rapidly (t(1/2) approximately 500 ms) upon photobleaching. Fluorescence energy resonance transfer microscopy was employed to visualize a tight interaction of GAT1-E101D with calnexin. Recognition by calnexin occurred largely in a glycan-independent manner and, at least in part, at the level of the transmembrane domain. Our findings are consistent with a model in which the transmembrane segment of calnexin participates in chaperoning the inter- and intramolecular arrangement of hydrophobic segment in oligomeric proteins.
Resumo:
In trypanosomes, as in other eukaryotes, more than 95% of all mitochondrial proteins are imported into the mitochondrion. The recently characterized multisubunit ATOM complex mediates import of essentially all proteins across the outer mitochondrial membrane in T. brucei. Moreover, an additional protein termed pATOM36, which is loosely associated with the ATOM complex, has been implicated in the import of only a subset of mitochondrial matrix proteins. Here we have investigated more precisely which role pATOM36 plays in mitochondrial protein import. RNAi mediated ablation of pATOM36 specifically depletes a subset of ATOM complex subunits and as a consequence results in the collapse of the ATOM complex as shown by Blue native PAGE. In addition, a SILAC-based global proteomic analysis of uninduced and induced pATOM36 RNAi cells together with in vitro import experiments suggest that pATOM36 might be a novel protein insertase acting on a subset of alpha-helically anchored mitochondrial outer membrane proteins. Identification of pATOM36 interaction partners by co-immunoprecipitation together with immunofluorescence analysis furthermore shows that unexpectedly a fraction of the protein is associated with the tripartite attachment complex (TAC). This complex is essential for proper inheritance of the kDNA as it forms a physical connection between the kDNA and the basal body of the flagellum throughout the cell cycle. Thus, the presence of pATOM36 in the TAC provides an exciting link between mitochondrial protein import and kDNA inheritance.