998 resultados para Melting conditions


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An array-based approach is put forward to obtain insight into reactivity under mechanochemical solvent-free conditions. We describe a survey of sixty potential reactions between twelve metal salts MX2 {(M = Cu, X-2 = (OAc)(2), (HCO2)(2), (F3CCO2)(2), (acac)(2), (F(6)acac)(2), (NO3)(2), SO4; M = Ni, X-2 = (OAc)(2), (NO3)(2), SO4; M = Zn, X-2 (OAc)(2), (NO3)(2)} and five bridging organic ligands {isonicotinic acid (HINA), 1,4-benzenedicarboxylic acid (H2BDC), acetylenedicarboxylic acid (H(2)ADC), 1,3,5-benzenetricarboxylic acid (H3BTC), 4,4'-bipyridyl (BIPY). Reaction conditions involved a ball mill, applied for 15 min at 30 Hz, without external heating. When examined by XRPD, forty of the combinations gave detectable reactions, thirty-eight with crystalline products. Of these, twenty-nine reactions were quantitative (consuming all of at least one reactant). Comparison of XRPD patterns with patterns simulated from single crystal X-ray diffraction data in the Cambridge Structural Database allowed structural identification of six products. Of particular interest are the microporous framework materials [Cu(INA)(2)] and [Cu-3(BTC)(2)] (HKUST-1) obtained by reaction of the corresponding carboxylic acids with copper acetate. Other non-porous polymers with 3-dimensional connectivity, [Ni(ADC)(H2O)(4)], or 1-dimensional connectivity, [Cu(acac)(2)(BIPY)] and [Cu(F6acac)(BIPY)] were also obtained. Reaction between zinc acetate and H2ADC gave a new product which had not previously been characterised by single-crystal X-ray crystallography, but whose XRPD pattern suggests that it is isostructural with the known nickel polymer [Ni(ADC)(H2O)(4)]. Two further isostructural nickel and zinc products were obtained in reactions between HINA and nickel nitrate and zinc nitrate. Trends observed within the array are discussed. Copper acetate and copper formate were the most effective starting materials for reaction with carboxylic acids, potentially related to the basicity of their anions and the solvating effects of the formic and acetic acid byproducts. Amongst the ligands there was a general negative corelation between melting point and reactivity. The issue of pore templating in microporous phases and the generation of new structures is also discussed in relation to the Cu(INA)(2), Cu-3(BTC)(2) and nickel nitrate-BIPY systems. Overall, the study suggests that mechanochemical reactivity between metal salts and organic ligands under solvent free conditions is remarkably general. Use of array-based approaches as demonstrated here is advocated a useful way to reveal underlying trends in reactivity under solvent free mechanochemical conditions and to highlight particular cases for more detailed study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Amorphous drug-polymer solid dispersions have been found to result in improved drug dissolution rates when compared to their crystalline counterparts. However, when the drug exists in the amorphous form it will possess a higher Gibb’s free energy than its associated crystalline state and can recrystallize. Drug-polymer phase diagrams constructed through the application of the Flory Huggins (F-H) theory contain a wealth of information regarding thermodynamic and kinetic stability of the amorphous drug-polymer system. This study was aimed to evaluate the effects of various experimental conditions on the solubility and miscibility detections of drug-polymer binary system. Methods: Felodipine (FD)-Polyvinylpyrrolidone (PVP) K15 (PVPK15) and FD-Polyvinylpyrrolidone/vinyl acetate (PVP/VA64) were the selected systems for this research. Physical mixtures with different drug loadings were mixed and ball milled. These samples were then processed using Differential Scanning Calorimetry (DSC) and measurements of melting point (Tend) and glass transition (Tg) were detected using heating rates of 0.5, 1.0 and 5.0°C/min. Results: The melting point depression data was then used to calculate the F-H interaction parameter (χ) and extrapolated to lower temperatures to complete the liquid–solid transition curves. The theoretical binodal and spinodal curves were also constructed which were used to identify regions within the phase diagram. The effects of polymer selection, DSC heating rate, time above parent polymer Tg and polymer molecular weight were investigated by identifying amorphous drug miscibility limits at pharmaceutically relevant temperatures. Conclusion: The potential implications of these findings when applied to a non-ambient processing method such as Hot Melt Extrusion (HME) are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A femtosecond-laser pulse can induce ultrafast nonthermal melting of various materials along pathways that are inaccessible under thermodynamic conditions, but it is not known whether there is any structural modification at fluences just below the melting threshold. Here, we show for silicon that in this regime the room-temperature phonons become thermally squeezed, which is a process that has not been reported before in this material. We find that the origin of this effect is the sudden femtosecond-laser-induced softening of interatomic bonds, which can also be described in terms of a modification of the potential energy surface. We further find in ab initio molecular-dynamics simulations on laser-excited potential energy surfaces that the atoms move in the same directions during the first stages of nonthermal melting and thermal phonon squeezing. Our results demonstrate how femtosecond-laser-induced coherent fluctuations precurse complete atomic disordering as a function of fluence. The common underlying bond-softening mechanism indicates that this relation between thermal squeezing and nonthermal melting is not material specific.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fresh water hosing simulations, in which a fresh water flux is imposed in the North Atlantic to force fluctuations of the Atlantic Meridional Overturning Circulation, have been routinely performed, first to study the climatic signature of different states of this circulation, then, under present or future conditions, to investigate the potential impact of a partial melting of the Greenland ice sheet. The most compelling examples of climatic changes potentially related to AMOC abrupt variations, however, are found in high resolution palaeo-records from around the globe for the last glacial period. To study those more specifically, more and more fresh water hosing experiments have been performed under glacial conditions in the recent years. Here we compare an ensemble constituted by 11 such simulations run with 6 different climate models. All simulations follow a slightly different design, but are sufficiently close in their design to be compared. They all study the impact of a fresh water hosing imposed in the extra-tropical North Atlantic. Common features in the model responses to hosing are the cooling over the North Atlantic, extending along the sub-tropical gyre in the tropical North Atlantic, the southward shift of the Atlantic ITCZ and the weakening of the African and Indian monsoons. On the other hand, the expression of the bipolar see-saw, i.e., warming in the Southern Hemisphere, differs from model to model, with some restricting it to the South Atlantic and specific regions of the southern ocean while others simulate a widespread southern ocean warming. The relationships between the features common to most models, i.e., climate changes over the north and tropical Atlantic, African and Asian monsoon regions, are further quantified. These suggest a tight correlation between the temperature and precipitation changes over the extra-tropical North Atlantic, but different pathways for the teleconnections between the AMOC/North Atlantic region and the African and Indian monsoon regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study focuses on regional entrepreneurial ecosystems and offers a complex model of start-ups, Regional Entrepreneurship and Development Index (REDI) and six domains of the entrepreneurial ecosystem (culture, formal institutions, infrastructure and amenities, IT, Melting Pot and demand). Altogether they capture the contextual features of socioeconomic, institutional and information environment in cities. To explain variations in entrepreneurship in a cross-section of 70 European cities, we utilize exploratory factor analysis and structural equation modelling for regional systems of entrepreneurship using individual perception surveys by Eurostat and the REDI. This study supports policymakers and scholars in development of new policies conducive to regional systems of innovation and entrepreneurship and serves as a basis for future research on urban entrepreneurial ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms of nucleation and growth and the solid-to-liquid transition of metallic nanoclusters embedded in sodium borate glass were recently studied in situ via small-angle X-ray scattering (SAXS) and wide-an-le X-ray scattering (WAXS). SAXS results indicate that, under isothermal annealing conditions, the formation and growth of Bi or Ag nanoclusters embedded in sodium borate glass occurs through two successive stages after a short incubation period. The first stage is characterized by the nucleation and growth of spherical metal clusters promoted by the diffusion of Bi or Ag atoms through the initially supersaturated glass phase. The second stage is named the coarsening stage and occurs when the (Bi- or Ag-) doping level of the vitreous matrix is close to the equilibrium value. The experimental results demonstrated that, at advanced stages of the growth process, the time dependence of the average radius and density number of the clusters is in agreement with the classical Lifshitz-Slyozov-Waoner (LSW) theory. However, the radius distribution function is better described by a lognormal function than by the function derived from the theoretical LSW model. From the results of SAXS measurements at different temperatures, the activation energies for the diffusion of Ag and Bi through sodium borate glass were determined. In addition, via combination of the results of simultaneous WAXS and SAXS measurements at different temperatures, the crystallographic structure and the dependence of melting temperature T(m) on crystal radius R of Bi nanocrystals were established. The experimental results indicate that T(m) is a linear and decreasing function of nanocrystal reciprocal radius 1/R, in agreement with the Couchman and Jesser theoretical model. Finally, a weak contraction in the lattice parameters of Bi nanocrystals with respect to bulk crystals was established.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ZusammenfassungDie Bildung von mittelozeanischen Rückenbasalten (MORB) ist einer der wichtigsten Stoffflüsse der Erde. Jährlich wird entlang der 75.000 km langen mittelozeanischen Rücken mehr als 20 km3 neue magmatische Kruste gebildet, das sind etwa 90 Prozent der globalen Magmenproduktion. Obwohl ozeanische Rücken und MORB zu den am meisten untersuchten geologischen Themenbereichen gehören, existieren weiterhin einige Streit-fragen. Zu den wichtigsten zählt die Rolle von geodynamischen Rahmenbedingungen, wie etwa Divergenzrate oder die Nähe zu Hotspots oder Transformstörungen, sowie der absolute Aufschmelzgrad, oder die Tiefe, in der die Aufschmelzung unter den Rücken beginnt. Diese Dissertation widmet sich diesen Themen auf der Basis von Haupt- und Spurenelementzusammensetzungen in Mineralen ozeanischer Mantelgesteine.Geochemische Charakteristika von MORB deuten darauf hin, dass der ozeanische Mantel im Stabilitätsfeld von Granatperidotit zu schmelzen beginnt. Neuere Experimente zeigen jedoch, dass die schweren Seltenerdelemente (SEE) kompatibel im Klinopyroxen (Cpx) sind. Aufgrund dieser granatähnlichen Eigenschaft von Cpx wird Granat nicht mehr zur Erklärung der MORB Daten benötigt, wodurch sich der Beginn der Aufschmelzung zu geringeren Drucken verschiebt. Aus diesem Grund ist es wichtig zu überprüfen, ob diese Hypothese mit Daten von abyssalen Peridotiten in Einklang zu bringen ist. Diese am Ozeanboden aufgeschlossenen Mantelfragmente stellen die Residuen des Aufschmelz-prozesses dar, und ihr Mineralchemismus enthält Information über die Bildungs-bedingungen der Magmen. Haupt- und Spurenelementzusammensetzungen von Peridotit-proben des Zentralindischen Rückens (CIR) wurden mit Mikrosonde und Ionensonde bestimmt, und mit veröffentlichten Daten verglichen. Cpx der CIR Peridotite weisen niedrige Verhältnisse von mittleren zu schweren SEE und hohe absolute Konzentrationen der schweren SEE auf. Aufschmelzmodelle eines Spinellperidotits unter Anwendung von üblichen, inkompatiblen Verteilungskoeffizienten (Kd's) können die gemessenen Fraktionierungen von mittleren zu schweren SEE nicht reproduzieren. Die Anwendung der neuen Kd's, die kompatibles Verhalten der schweren SEE im Cpx vorhersagen, ergibt zwar bessere Resultate, kann jedoch nicht die am stärksten fraktionierten Proben erklären. Darüber hinaus werden sehr hohe Aufschmelzgrade benötigt, was nicht mit Hauptelementdaten in Einklang zu bringen ist. Niedrige (~3-5%) Aufschmelzgrade im Stabilitätsfeld von Granatperidotit, gefolgt von weiterer Aufschmelzung von Spinellperidotit kann jedoch die Beobachtungen weitgehend erklären. Aus diesem Grund muss Granat weiterhin als wichtige Phase bei der Genese von MORB betrachtet werden (Kapitel 1).Eine weitere Hürde zum quantitativen Verständnis von Aufschmelzprozessen unter mittelozeanischen Rücken ist die fehlende Korrelation zwischen Haupt- und Spuren-elementen in residuellen abyssalen Peridotiten. Das Cr/(Cr+Al) Verhältnis (Cr#) in Spinell wird im Allgemeinen als guter qualitativer Indikator für den Aufschmelzgrad betrachtet. Die Mineralchemie der CIR Peridotite und publizierte Daten von anderen abyssalen Peridotiten zeigen, dass die schweren SEE sehr gut (r2 ~ 0.9) mit Cr# der koexistierenden Spinelle korreliert. Die Auswertung dieser Korrelation ergibt einen quantitativen Aufschmelz-indikator für Residuen, welcher auf dem Spinellchemismus basiert. Damit kann der Schmelzgrad als Funktion von Cr# in Spinell ausgedrückt werden: F = 0.10×ln(Cr#) + 0.24 (Hellebrand et al., Nature, in review; Kapitel 2). Die Anwendung dieses Indikators auf Mantelproben, für die keine Ionensondendaten verfügbar sind, ermöglicht es, geochemische und geophysikalischen Daten zu verbinden. Aus geodynamischer Perspektive ist der Gakkel Rücken im Arktischen Ozean von großer Bedeutung für das Verständnis von Aufschmelzprozessen, da er weltweit die niedrigste Divergenzrate aufweist und große Transformstörungen fehlen. Publizierte Basaltdaten deuten auf einen extrem niedrigen Aufschmelzgrad hin, was mit globalen Korrelationen im Einklang steht. Stark alterierte Mantelperidotite einer Lokalität entlang des kaum beprobten Gakkel Rückens wurden deshalb auf Primärminerale untersucht. Nur in einer Probe sind oxidierte Spinellpseudomorphosen mit Spuren primärer Spinelle erhalten geblieben. Ihre Cr# ist signifikant höher als die einiger Peridotite von schneller divergierenden Rücken und ihr Schmelzgrad ist damit höher als aufgrund der Basaltzusammensetzungen vermutet. Der unter Anwendung des oben erwähnten Indikators ermittelte Schmelzgrad ermöglicht die Berechnung der Krustenmächtigkeit am Gakkel Rücken. Diese ist wesentlich größer als die aus Schweredaten ermittelte Mächtigkeit, oder die aus der globalen Korrelation zwischen Divergenzrate und mittels Seismik erhaltene Krustendicke. Dieses unerwartete Ergebnis kann möglicherweise auf kompositionelle Heterogenitäten bei niedrigen Schmelzgraden, oder auf eine insgesamt größere Verarmung des Mantels unter dem Gakkel Rücken zurückgeführt werden (Hellebrand et al., Chem.Geol., in review; Kapitel 3).Zusätzliche Informationen zur Modellierung und Analytik sind im Anhang A-C aufgeführt

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present PhD thesis summarizes two examples of research in microfluidics. Both times water was the subject of interest, once in the liquid state (droplets adsorbed on chemically functionalized surfaces), the other time in the solid state (ice snowflakes and their fractal behaviour). The first problem deals with a slipping nano-droplet of water adsorbed on a surface with photo-switchable wettability characteristics. Main focus was on identifying the underlying driving forces and mechanical principles at the molecular level of detail. Molecular Dynamics simulation was employed as investigative tool owing to its record of successfully describing the microscopic behaviour of liquids at interfaces. To reproduce the specialized surface on which a water droplet can effectively “walk”, a new implicit surface potential was developed. Applying this new method the experimentally observed droplet slippage could be reproduced successfully. Next the movement of the droplet was analyzed at various conditions emphasizing on the behaviour of the water molecules in contact with the surface. The main objective was to identify driving forces and molecular mechanisms underlying the slippage process. The second part of this thesis is concerned with theoretical studies of snowflake melting. In the present work snowflakes are represented by filled von Koch-like fractals of mesoscopic beads. A new algorithm has been developed from scratch to simulate the thermal collapse of fractal structures based on Monte Carlo and Random Walk Simulations (MCRWS). The developed method was applied and compared to Molecular Dynamics simulations regarding the melting of ice snowflake crystals and new parameters were derived from this comparison. Bigger snow-fractals were then studied looking at the time evolution at different temperatures again making use of the developed MCRWS method. This was accompanied by an in-depth analysis of fractal properties (border length and gyration radius) in order to shed light on the dynamics of the melting process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This PhD thesis concerns geochemical constraints on recycling and partial melting of Archean continental crust. A natural example of such processes was found in the Iisalmi area of Central Finland. The rocks from this area are Middle to Late Archean in age and experienced metamorphism and partial melting between 2.7-2.63 Ga. The work is based on extensive field work. It is furthermore founded on bulk rock geochemical data as well as in-situ analyses of minerals. All geochemical data were obtained at the Institute of Geosciences, University of Mainz using X-ray fluorescence, solution ICP-MS and laser ablation-ICP-MS for bulk rock geochemical analyses. Mineral analyses were accomplished by electron microprobe and laser ablation ICP-MS. Fluid inclusions were studied by microscope on a heating-freezing-stage at the Geoscience Center, University Göttingen. Part I focuses on the development of a new analytical method for bulk rock trace element determination by laser ablation-ICP-MS using homogeneous glasses fused from rock powder on an Iridium strip heater. This method is applicable for mafic rock samples whose melts have low viscosities and homogenize quickly at temperatures of ~1200°C. Highly viscous melts of felsic samples prevent melting and homogenization at comparable temperatures. Fusion of felsic samples can be enabled by addition of MgO to the rock powder and adjustment of melting temperature and melting duration to the rock composition. Advantages of the fusion method are low detection limits compared to XRF analyses and avoidance of wet-chemical processing and use of strong acids as in solution ICP-MS as well as smaller sample volumes compared to the other methods. Part II of the thesis uses bulk rock geochemical data and results from fluid inclusion studies for discrimination of melting processes observed in different rock types. Fluid inclusion studies demonstrate a major change in fluid composition from CO2-dominated fluids in granulites to aqueous fluids in TTG gneisses and amphibolites. Partial melts were generated in the dry, CO2-rich environment by dehydration melting reactions of amphibole which in addition to tonalitic melts produced the anhydrous mineral assemblages of granulites (grt + cpx + pl ± amph or opx + cpx + pl + amph). Trace element modeling showed that mafic granulites are residues of 10-30 % melt extraction from amphibolitic precursor rocks. The maximum degree of melting in intermediate granulites was ~10 % as inferred from modal abundances of amphibole, clinopyroxene and orthopyroxene. Carbonic inclusions are absent in upper-amphibolite facies migmatites whereas aqueous inclusion with up to 20 wt% NaCl are abundant. This suggests that melting within TTG gneisses and amphibolites took place in the presence of an aqueous fluid phase that enabled melting at the wet solidus at temperatures of 700-750°C. The strong disruption of pre-metamorphic structures in some outcrops suggests that the maximum amount of melt in TTG gneisses was ~25 vol%. The presence of leucosomes in all rock types is taken as the principle evidence for melt formation. However, mineralogical appearance as well as major and trace element composition of many leucosomes imply that leucosomes seldom represent frozen in-situ melts. They are better considered as remnants of the melt channel network, e.g. ways on which melts escaped from the system. Part III of the thesis describes how analyses of minerals from a specific rock type (granulite) can be used to determine partition coefficients between different minerals and between minerals and melt suitable for lower crustal conditions. The trace element analyses by laser ablation-ICP-MS show coherent distribution among the principal mineral phases independent of rock composition. REE contents in amphibole are about 3 times higher than REE contents in clinopyroxene from the same sample. This consistency has to be taken into consideration in models of lower crustal melting where amphibole is replaced by clinopyroxene in the course of melting. A lack of equilibrium is observed between matrix clinopyroxene / amphibole and garnet porphyroblasts which suggests a late stage growth of garnet and slow diffusion and equilibration of the REE during metamorphism. The data provide a first set of distribution coefficients of the transition metals (Sc, V, Cr, Ni) in the lower crust. In addition, analyses of ilmenite and apatite demonstrate the strong influence of accessory phases on trace element distribution. Apatite contains high amounts of REE and Sr while ilmenite incorporates about 20-30 times higher amounts of Nb and Ta than amphibole. Furthermore, trace element mineral analyses provide evidence for magmatic processes such as melt depletion, melt segregation, accumulation and fractionation as well as metasomatism having operated in this high-grade anatectic area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Ivrea Zone in northern Italy has been the focus of numerous petrological, geochemical and structural studies. It is commonly inferred to represent an almost complete section through the mid to lower continental crust, in which metamorphism and partial melting of the abundant metapelites was the result of magmatic underplating by a large volume of mantle-derived magma. This study concerns amphibolite and granulite facies metamorphism in the Ivrea Zone with focus on metapelites and metapsammites/metagreywackes from Val Strona di Omegna and metapelites from Val Sesia and Val Strona di Postua, with the aim to better constrain their metamorphic evolution as well as their pressure and temperature conditions via phase equilibria modelling.rnrnIn Val Strona di Omegna, the metapelites show a structural and mineralogical change from mica-schists with the common assemblage bi-mu-sill-pl-q-ilm ± liq at the lowest grades, through metatexitic migmatites (g-sill-bi-ksp-pl-q-ilm-liq) at intermediate grades, to complex diatexitic migmatites (g-sill-ru-bi-ksp-pl-q-ilm-liq) at the highest grades. Within this section several mappable isograds occur, including the first appearance of K-feldspar in the metapelites, the first appearance of orthopyroxene in the metabasites and the disappearance of prograde biotite from the metapelites. The inferred onset of partial melting in the metapelites occurs around Massiola. The prograde suprasolidus evolution of the metapelites is consistent with melting via the breakdown of first muscovite then biotite. Maximum modelled melt fractions of 30–40 % are predicted at the highest grade. The regional metamorphic field gradient in Val Strona di Omegna is constrained to range from conditions of 3.5–6.5 kbar at T = 650–730 °C to P > 9 kbar at T > 900 °C. The peak P–T estimates, particularly for granulite facies conditions, are significantly higher (around 100 °C) than those of most previous studies. In Val Sesia and Val Strona di Postua to the south the exposure is more restricted. P–T estimates for the metapelites are 750–850 °C and 5–6.5 kbar in Val Sesia and approximately 800–900 °C and 5.5–7 kbar in Val Strona di Postua. These results show similar temperatures but lower pressure than metapelites in Val Strona di Omegna. Metapelites in Val Sesia in contact with the Mafic Complex exhibit a metatexitic structure, while in Val Strona di Postua diatexitic structures occur. Further, metapelites at the contact with the Mafic Complex contain cordierite (± spinel) that overprint the regional metamorphic assemblages and are interpreted to have formed during contact metamorphism related to intrusion of the Mafic Complex. The lower pressures in the high-grade rocks in Val Sesia and Val Strona di Postua are consistent with some decompression from the regional metamorphic peak prior to the intrusion of the Mafic Complex, suggesting the rocks followed a clockwise P–T path. In contrast, the metapelites in Val Strona di Omegna, especially in the granulite facies, do not contain any cordierite or any evidence for a contact metamorphic overprint. The extrapolated granulite facies mineral isograds are cut by the rocks of the Mafic Complex to the south. Therefore, the Mafic Complex cannot have caused the regional metamorphism and it is unlikely that the Mafic Complex occurs in Val Strona di Omegna.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large uncertainties exist concerning the impact of Greenland ice sheet melting on the Atlantic meridional overturning circulation (AMOC) in the future, partly due to different sensitivity of the AMOC to freshwater input in the North Atlantic among climate models. Here we analyse five projections from different coupled ocean–atmosphere models with an additional 0.1 Sv (1 Sv = 10 6 m3/s) of freshwater released around Greenland between 2050 and 2089. We find on average a further weakening of the AMOC at 26°N of 1.1 ± 0.6 Sv representing a 27 ± 14% supplementary weakening in 2080–2089, as compared to the weakening relative to 2006–2015 due to the effect of the external forcing only. This weakening is lower than what has been found with the same ensemble of models in an identical experimen - tal set-up but under recent historical climate conditions. This lower sensitivity in a warmer world is explained by two main factors. First, a tendency of decoupling is detected between the surface and the deep ocean caused by an increased thermal stratification in the North Atlantic under the effect of global warming. This induces a shoaling of ocean deep ventilation through convection hence ventilating only intermediate levels. The second important effect concerns the so-called Canary Current freshwater leakage; a process by which additionally released fresh water in the North Atlantic leaks along the Canary Current and escapes the convection zones towards the subtropical area. This leakage is increasing in a warming climate, which is a consequence of decreasing gyres asymmetry due to changes in Ekman rumping. We suggest that these modifications are related with the northward shift of the jet stream in a warmer world. For these two reasons the AMOC is less susceptible to freshwater perturbations (near the deep water formation sides) in the North Atlantic as compared to the recent historical climate conditions. Finally, we propose a bilinear model that accounts for the two former processes to give a conceptual explanation about the decreasing AMOC sensitivity due to freshwater input. Within the limit of this bilinear model, we find that 62 ± 8% of the reduction in sensitivity is related with the changes in gyre asymmetry and freshwater leakage and 38 ± 8% is due to the reduction in deep ocean ventilation associated with the increased stratification in the North Atlantic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trace element behavior during hydrous melting of a metasomatized garnet–peridotite was examined at pressures of 4–6 GPa and temperatures of 1000 °C–1200 °C, conditions appropriate for fluid penetrating the mantle wedge atop the subducting slab. Experiments were performed in a rocking multi-anvil apparatus using a diamond-trap setup. The compositions of the fluid and melt phases were measured using the cryogenic LA-ICP-MS technique. The water-saturated solidus of the K-lherzolite composition is located between 900 °C and 1000 °C at 4 GPa and between 1000 °C and 1100 °C at 5 and 6 GPa. The partition coefficients between fluid or melt and clinopyroxene reveal an asymmetric MREE trough with a minimum at Dy. The clinopyroxene in equilibrium with aqueous fluids is characterized by DUfluid–cpx > DThfluid–cpx while DUmelt–cpx tends to be similar to DThmelt–cpx. The partition coefficients between fluid or melt and garnet reveal very strong light to heavy REE fractionation, DLa/DLu from 95 (hydrous melt) to 1600 (aqueous fluid). The LILE are highly incompatible with partition coefficients > 50. The behavior of HFSE are decoupled, with DZr,Hf close to 1 while DNb,Ta > 10. Garnet is characterized by DUmelt/fluid–garnet < DThmelt/fluid–garnet. A comparison of our experimental partitioning results for trivalent cations as well as the results from the literature and the calculations carried out using the lattice strain model adapted to the presence of water in the bulk system indicates that H2O in the fluid or melt phase has a prominent effect on trace element partitioning. Garnet in mantle rocks in equilibrium with an aqueous fluid is characterized by significantly higher Do(3 +) for REE in the X site of the garnet compared with the partitioning values of the optimal cation in garnet in equilibrium with hydrous melts. Our data show for the first time that the change in the nature of the mobile phase (fluid vs. melt) does affect the affinities of trace elements into the garnet crystal at conditions below the second critical endpoint of the system. The same also applies for clinopyroxene, although this is less clear. Consequently, our new data allow for refinements in predictive modeling of element transfer from the slab to the mantle wedge and of possible compositions of metasomatized mantle that sources OIB magmatism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Equilibrium melting and controlled cooling experiments were undertaken to constrain the crystallization and cooling histories of tholeiitic basalts recovered by the Ocean Drilling Program drilling of Site 989 on the Southeast Greenland continental margin. Isothermal experiments conducted at 1 atm. and at the fayalite-magnetite-quartz buffer using lava sample Section 163-989B-10R-7 yielded the equilibrium appearance sequence with decreasing temperature: olivine at 1184 ± 2ºC; plagioclase at 1177ºC ± 5ºC; augite at 1167 ± 5ºC; and pigeonite at 1113 ± 12ºC. In controlled cooling experiments using the same starting composition and cooling rates between 10ºC/hr and 2000ºC/hr, we find a significant temperature delay in the crystallization of olivine, plagioclase, and augite (relative to the equilibrium appearance temperature); pigeonite does not form under any dynamic crystallization conditions. Olivine exhibits the largest suppression in appearance temperature (e.g., 30º for 10ºC/hr and >190º at 100ºC/hr), while plagioclase shows the smallest (~10ºC at 10ºC/hr; 30ºC at 100ºC/hr, and ~80ºC at 1000ºC/hr). These results are in marked contrast to those obtained on lunar basalts, which generally show a large suppression of plagioclase crystallization and modest suppression of olivine crystallization with an increased cooling rate. The results we report agree well with the petrography of lavas recovered from Site 989. Furthermore, the textural analysis of run products, representing a large range of cooling rates and quench temperatures (1150ºC to 1000ºC), provide a framework for evaluating cooling conditions necessary for glass formation, rates of plagioclase growth, and kinetic factors governing plagioclase growth morphology. Specifically, we use these insights to interpret the textural and mineralogical features of the unusual compound flow recovered at Site 989. We concluded from the analysis that this flow most likely records multiple breakouts from a distal tube at an abrupt break in slope, possibly a fault scarp, resulting in the formation of a lava fan delta. This interpretation implies that normal faulting of the oldest lava sequences (lower and, possibly, middle series) preceded eruption of Site 989 lavas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We performed hydrous partial melting experiments at shallow pressures (0.2 GPa) under slightly oxidizing conditions (NNO oxygen buffer) on oceanic cumulate gabbros drilled by ODP (Ocean Drilling Program) cruises to evaluate whether the partial melting of oceanic gabbro can generate SiO2-rich melts with compositions typical of oceanic plagiogranites. The experimental melts of the low-temperature runs broadly overlap those of natural plagiogranites. At 940 °C, the normalized SiO2 contents of the experimental melts of all systems range between 60 and 61 wt%, and at 900 °C between 63 and 68 wt%. These liquids are characterized by low TiO2 and FeOtot contents, similar to those of natural plagiogranites from the plutonic section of the oceanic crust, but in contrast to Fe and Ti-rich low-temperature experimental melts obtained in MORB systems at ~950 °C. The ~1,500-m-long drilled gabbroic section of ODP Hole 735B (Legs 118 and 176) at the Southwest Indian Ridge contains numerous small plagiogranitic veins often associated with zones which are characterized by high-temperature shearing. The compositions of the experimental melts obtained at low temperatures match those of the natural plagiogranitic veins, while the compositions of the crystals of low-temperature runs correspond to those of minerals from high-temperature microscopic veins occurring in the gabbroic section of the Hole 735B. This suggests that the observed plagiogranitic veins are products of a partial melting process triggered by a water-rich fluid phase. If the temperature estimations for hightemperature shear zones are correct (up to 1,000 °C), and a water-rich fluid phase is present, the formation of plagiogranites by partial melting of gabbros is probably a widespread phenomenon in the genesis of the ocean crust.