948 resultados para Meios de hospedagem
Resumo:
O presente trabalho trata do escoamento bifásico em meios porosos heterogêneos de natureza fractal, onde os fluidos são considerados imiscíveis. Os meios porosos são modelados pela equação de Kozeny-Carman Generalizada (KCG), a qual relaciona a porosidade com a permeabilidade do meio através de uma nova lei de potência. Esta equação proposta por nós é capaz de generalizar diferentes modelos existentes na literatura e, portanto, é de uso mais geral. O simulador numérico desenvolvido aqui emprega métodos de diferenças finitas. A evolução temporal é baseada em um esquema de separação de operadores que segue a estratégia clássica chamada de IMPES. Assim, o campo de pressão é calculado implicitamente, enquanto que a equação da saturação da fase molhante é resolvida explicitamente em cada nível de tempo. O método de otimização denominado de DFSANE é utilizado para resolver a equação da pressão. Enfatizamos que o DFSANE nunca foi usado antes no contexto de simulação de reservatórios. Portanto, o seu uso aqui é sem precedentes. Para minimizar difusões numéricas, a equação da saturação é discretizada por um esquema do tipo "upwind", comumente empregado em simuladores numéricos para a recuperação de petróleo, o qual é resolvido explicitamente pelo método Runge-Kutta de quarta ordem. Os resultados das simulações são bastante satisfatórios. De fato, tais resultados mostram que o modelo KCG é capaz de gerar meios porosos heterogêneos, cujas características permitem a captura de fenômenos físicos que, geralmente, são de difícil acesso para muitos simuladores em diferenças finitas clássicas, como o chamado fenômeno de dedilhamento, que ocorre quando a razão de mobilidade (entre as fases fluidas) assume valores adversos. Em todas as simulações apresentadas aqui, consideramos que o problema imiscível é bidimensional, sendo, portanto, o meio poroso caracterizado por campos de permeabilidade e de porosidade definidos em regiões Euclideanas. No entanto, a teoria abordada neste trabalho não impõe restrições para sua aplicação aos problemas tridimensionais.
Resumo:
As técnicas de injeção de traçadores têm sido amplamente utilizadas na investigação de escoamentos em meios porosos, principalmente em problemas envolvendo a simulação numérica de escoamentos miscíveis em reservatórios de petróleo e o transporte de contaminantes em aquíferos. Reservatórios subterrâneos são em geral heterogêneos e podem apresentar variações significativas das suas propriedades em várias escalas de comprimento. Estas variações espaciais são incorporadas às equações que governam o escoamento no interior do meio poroso por meio de campos aleatórios. Estes campos podem prover uma descrição das heterogeneidades da formação subterrânea nos casos onde o conhecimento geológico não fornece o detalhamento necessário para a predição determinística do escoamento através do meio poroso. Nesta tese é empregado um modelo lognormal para o campo de permeabilidades a fim de reproduzir-se a distribuição de permeabilidades do meio real, e a geração numérica destes campos aleatórios é feita pelo método da Soma Sucessiva de Campos Gaussianos Independentes (SSCGI). O objetivo principal deste trabalho é o estudo da quantificação de incertezas para o problema inverso do transporte de um traçador em um meio poroso heterogêneo empregando uma abordagem Bayesiana para a atualização dos campos de permeabilidades, baseada na medição dos valores da concentração espacial do traçador em tempos específicos. Um método do tipo Markov Chain Monte Carlo a dois estágios é utilizado na amostragem da distribuição de probabilidade a posteriori e a cadeia de Markov é construída a partir da reconstrução aleatória dos campos de permeabilidades. Na resolução do problema de pressão-velocidade que governa o escoamento empregase um método do tipo Elementos Finitos Mistos adequado para o cálculo acurado dos fluxos em campos de permeabilidades heterogêneos e uma abordagem Lagrangiana, o método Forward Integral Tracking (FIT), é utilizada na simulação numérica do problema do transporte do traçador. Resultados numéricos são obtidos e apresentados para um conjunto de realizações amostrais dos campos de permeabilidades.
Resumo:
O processo de recuperação secundária de petróleo é comumente realizado com a injeção de água ou gás no reservatório a fim de manter a pressão necessária para sua extração. Para que o investimento seja viável, os gastos com a extração precisam ser menores do que o retorno financeiro obtido com a produção de petróleo. Objetivando-se estudar possíveis cenários para o processo de exploração, costuma-se utilizar simulações dos processos de extração. As equações que modelam esse processo de recuperação são de caráter hiperbólico e não lineares, as quais podem ser interpretadas como Leis de Conservação, cujas soluções são complexas por suas naturezas descontínuas. Essas descontinuidades ou saltos são conhecidas como ondas de choque. Neste trabalho foi abordada uma análise matemática para os fenômenos oriundos de leis de conservação, para em seguida utilizá-la no entendimento do referido problema. Foram estudadas soluções fracas que, fisicamente, podem ser interpretadas como ondas de choque ou rarefação, então, para que fossem distinguidas as fisicamente admissíveis, foi considerado o princípio de entropia, nas suas diversas formas. As simulações foram realizadas nos âmbitos dos escoamentos bifásicos e trifásicos, em que os fluidos são imiscíveis e os efeitos gravitacionais e difusivos, devido à pressão capilar, foram desprezados. Inicialmente, foi feito um estudo comparativo de resoluções numéricas na captura de ondas de choque em escoamento bifásico água-óleo. Neste estudo destacam-se o método Composto LWLF-k, o esquema NonStandard e a introdução da nova função de renormalização para o esquema NonStandard, onde obteve resultados satisfatórios, principalmente em regiões onde a viscosidade do óleo é muito maior do que a viscosidade da água. No escoamento bidimensional, um novo método é proposto, partindo de uma generalização do esquema NonStandard unidimensional. Por fim, é feita uma adaptação dos métodos LWLF-4 e NonStandard para a simulação em escoamentos trifásicos em domínios unidimensional. O esquema NonStandard foi considerado mais eficiente nos problemas abordados, uma vez que sua versão bidimensional mostrou-se satisfatória na captura de ondas de choque em escoamentos bifásicos em meios porosos.
Resumo:
Esta tese apresenta um estudo sobre modelagem computacional onde são aplicadas meta-heurísticas de otimização na solução de problemas inversos de transferência radiativa em meios unidimensionais com albedo dependente da variável óptica, e meios unidimensionais de duas camadas onde o problema inverso é tratado como um problema de otimização. O trabalho aplica uma meta-heurística baseada em comportamentos da natureza conhecida como algoritmo dos vagalumes. Inicialmente, foram feitos estudos comparativos de desempenho com dois outros algoritmos estocásticos clássicos. Os resultados encontrados indicaram que a escolha do algoritmo dos vagalumes era apropriada. Em seguida, foram propostas outras estratégias que foram inseridas no algoritmo dos vagalumes canônico. Foi proposto um caso onde se testou e investigou todas as potenciais estratégias. As que apresentaram os melhores resultados foram, então, testadas em mais dois casos distintos. Todos os três casos testados foram em um ambiente de uma camada, com albedo de espalhamento dependente da posição espacial. As estratégias que apresentaram os resultados mais competitivos foram testadas em um meio de duas camadas. Para este novo cenário foram propostos cinco novos casos de testes. Os resultados obtidos, pelas novas variantes do algoritmo dos vagalumes, foram criticamente analisados.
Resumo:
É presentada nesta dissertação uma análise espectral das equações de transporte de nêutrons, independente do tempo, em geometria unidimensional e bidimensional, na formulação de ordenadas discretas (SN), utilizando o modelo de uma velocidade e multigrupo, considerando meios onde ocorrem o fenômeno da fissão nuclear. Esta análise espectral constitui-se na resolução de problemas de autovalores e respectivos autovetores, e reproduz a expressão para a solução geral analítica local das equações SN (para geometria unidimensional) ou das equações nodais integradas transversalmente (geometria retangular bidimensional) dentro de cada região homogeneizada do domínio espacial. Com a solução geral local determinada, métodos numéricos, tais como os métodos de matriz de resposta SN, podem ser derivados. Os resultados numéricos são gerados por programas de computadores implementados em MatLab, versão 2012, a fim de verificar a natureza dos autovalores e autovetores correspondentes no espaço real ou complexo.
Resumo:
Neste trabalho é apresentada uma nova modelagem matemática para a descrição do escoamento de um líquido incompressível através de um meio poroso rígido homogêneo e isotrópico, a partir do ponto de vista da Teoria Contínua de Misturas. O fenômeno é tratado como o movimento de uma mistura composta por três constituintes contínuos: o primeiro representando a matriz porosa, o segundo representando o líquido e o terceiro representando um gás de baixíssima densidade. O modelo proposto possibilita uma descrição matemática realista do fenômeno de transição insaturado/saturado a partir de uma combinação entre um sistema de equações diferenciais parciais e uma desigualdade. A desigualdade representa uma limitação geométrica oriunda da incompressibilidade do líquido e da rigidez do meio poroso. Alguns casos particulares são simulados e os resultados comparados com resultados clássicos, mostrando as consequências de não levar em conta as restrições inerentes ao problema.
Resumo:
Esta pesquisa consiste na solução do problema inverso de transferência radiativa para um meio participante (emissor, absorvedor e/ou espalhador) homogêneo unidimensional em uma camada, usando-se a combinação de rede neural artificial (RNA) com técnicas de otimização. A saída da RNA, devidamente treinada, apresenta os valores das propriedades radiativas [ω, τ0, ρ1 e ρ2] que são otimizadas através das seguintes técnicas: Particle Collision Algorithm (PCA), Algoritmos Genéticos (AG), Greedy Randomized Adaptive Search Procedure (GRASP) e Busca Tabu (BT). Os dados usados no treinamento da RNA são sintéticos, gerados através do problema direto sem a introdução de ruído. Os resultados obtidos unicamente pela RNA, apresentam um erro médio percentual menor que 1,64%, seria satisfatório, todavia para o tratamento usando-se as quatro técnicas de otimização citadas anteriormente, os resultados tornaram-se ainda melhores com erros percentuais menores que 0,04%, especialmente quando a otimização é feita por AG.
Uma nova descrição para a transferência de massa em meios porosos com transição saturado-insaturado.
Resumo:
Esse texto trata do problema de um fluido contaminado escoando por um meio poroso, tratando os componentes na mistura como meios contínuos. Na primeira parte, desenvolvemos a teoria de misturas de meios contínuos e discutimos equações da continuidade, momento linear e momento angular. A seguir, descrevemos o problema em detalhe e fazemos hipóteses para simplificar o escoamento. Aplicamos as equações encontradas anteriormente para encontrarmos um sistema de equações diferenciais parciais. Desse ponto em diante, o problema se torna quase puramente matemático. Discutimos o caso insaturado, e depois a saturação do meio poroso. Finalmente, adicionamos um contaminante à mistura e, em seguida, N contaminantes.
Resumo:
Esta dissertação apresenta os resultados do estudo de monitoramento da qualidade de água na região hidrográfica da Baixada de Jacarepaguá através de coletas e posterior análise laboratorial realizadas na bacia hidrográfica experimental e representativa do Rio Morto. A bacia possui características predominantes peri-urbanas.
Resumo:
O desenvolvimento de software livre de Jacobiana para a resolução de problemas formulados por equações diferenciais parciais não-lineares é de interesse crescente para simular processos práticos de engenharia. Este trabalho utiliza o chamado algoritmo espectral livre de derivada para equações não-lineares na simulação de fluxos em meios porosos. O modelo aqui considerado é aquele empregado para descrever o deslocamento do fluido compressível miscível em meios porosos com fontes e sumidouros, onde a densidade da mistura de fluidos varia exponencialmente com a pressão. O algoritmo espectral utilizado é um método moderno para a solução de sistemas não-lineares de grande porte, o que não resolve sistemas lineares, nem usa qualquer informação explícita associados com a matriz Jacobiana, sendo uma abordagem livre de Jacobiana. Problemas bidimensionais são apresentados, juntamente com os resultados numéricos comparando o algoritmo espectral com um método de Newton inexato livre de Jacobiana. Os resultados deste trabalho mostram que este algoritmo espectral moderno é um método confiável e eficiente para a simulação de escoamentos compressíveis em meios porosos.
Resumo:
As simulações computacionais tem sido amplamente empregadas no estudo do escoamento darciano e não-darciano em meios porosos consolidados e não-consolidados. Neste trabalho, através de uma nova formulação para a equação de Forchheimer, foram identificadas duas novas propriedades denominados fator de comportamento do fluido, que atua paralelamente a permeabilidade, e permeabilidade equivalente global, resultado da relação anterior. Este comportamento foi estudado e validado através da implementação de um aparato experimental e um código computacional baseado no modelo de regressão-linear que, além disso, demonstrou que o escoamento, ainda que em regime não darciano, comporta-se linearmente como a equação de Darcy, ainda que o coeficiente angular desta diminuiu de acordo com a faixa do número de Reynolds atingida, sendo esta dependente do tipo de leito empregado. Ainda neste trabalho, foi implementado o método de otimização R2W para estimar os parâmetros da equação de Kozeny-Carman a partir de dados experimentais obtidos por Dias et al, a fim de simular o escoamento darciano em meios porosos. Por fim, foi alcançada excelente concordância entre os dados simulados pelo método R2W / equação de Kozeny-Carman e os dados reais.
Resumo:
2005
Resumo:
2009
Resumo:
1996
Resumo:
1998