901 resultados para Medical informatics applications
Resumo:
Measures of semantic similarity between medical concepts are central to a number of techniques in medical informatics, including query expansion in medical information retrieval. Previous work has mainly considered thesaurus-based path measures of semantic similarity and has not compared different corpus-driven approaches in depth. We evaluate the effectiveness of eight common corpus-driven measures in capturing semantic relatedness and compare these against human judged concept pairs assessed by medical professionals. Our results show that certain corpus-driven measures correlate strongly (approx 0.8) with human judgements. An important finding is that performance was significantly affected by the choice of corpus used in priming the measure, i.e., used as evidence from which corpus-driven similarities are drawn. This paper provides guidelines for the implementation of semantic similarity measures for medical informatics and concludes with implications for medical information retrieval.
Resumo:
Health Informatics is an intersection of information technology, several disciplines of medicine and health care. It sits at the common frontiers of health care services including patient centric, processes driven and procedural centric care. From the information technology perspective it can be viewed as computer application in medical and/or health processes for delivering better health care solutions. In spite of the exaggerated hype, this field is having a major impact in health care solutions, in particular health care deliveries, decision making, medical devices and allied health care industries. It also affords enormous research opportunities for new methodological development. Despite the obvious connections between Medical Informatics, Nursing Informatics and Health Informatics, most of the methodologies and approaches used in Health Informatics have so far originated from health system management, care aspects and medical diagnostic. This paper explores reasoning for domain knowledge analysis that would establish Health Informatics as a domain and recognised as an intellectual discipline in its own right.
Resumo:
Web-based social networking applications have become increasingly important in recent years. The current applications in the healthcare sphere can support the health management, but to date there is no patient-controlled integrator. This paper proposes a platform called Multiple Profile Manager (MPM) that enables a user to create and manage an integrated profile that can be shared across numerous social network sites. Moreover, it is able to facilitate the collection of personal healthcare data, which makes a contribution to the development of public health informatics. Here we want to illustrate how patients and physicians can be benefited from enabling the platform for online social network sites. The MPM simplifies the management of patients' profiles and allows health professionals to obtain a more complete picture of the patients' background so that they can provide better health care. To do so, we demonstrate a prototype of the platform and describe its protocol specification, which is an XMPP (Extensible Messaging and Presence Protocol) [1] extension, for sharing and synchronising profile data (vCard²) between different social networks.
Resumo:
Advances in neural network language models have demonstrated that these models can effectively learn representations of words meaning. In this paper, we explore a variation of neural language models that can learn on concepts taken from structured ontologies and extracted from free-text, rather than directly from terms in free-text. This model is employed for the task of measuring semantic similarity between medical concepts, a task that is central to a number of techniques in medical informatics and information retrieval. The model is built with two medical corpora (journal abstracts and patient records) and empirically validated on two ground-truth datasets of human-judged concept pairs assessed by medical professionals. Empirically, our approach correlates closely with expert human assessors ($\approx$ 0.9) and outperforms a number of state-of-the-art benchmarks for medical semantic similarity. The demonstrated superiority of this model for providing an effective semantic similarity measure is promising in that this may translate into effectiveness gains for techniques in medical information retrieval and medical informatics (e.g., query expansion and literature-based discovery).
Resumo:
Background As the increasing adoption of information technology continues to offer better distant medical services, the distribution of, and remote access to digital medical images over public networks continues to grow significantly. Such use of medical images raises serious concerns for their continuous security protection, which digital watermarking has shown great potential to address. Methods We present a content-independent embedding scheme for medical image watermarking. We observe that the perceptual content of medical images varies widely with their modalities. Recent medical image watermarking schemes are image-content dependent and thus they may suffer from inconsistent embedding capacity and visual artefacts. To attain the image content-independent embedding property, we generalise RONI (region of non-interest, to the medical professionals) selection process and use it for embedding by utilising RONI’s least significant bit-planes. The proposed scheme thus avoids the need for RONI segmentation that incurs capacity and computational overheads. Results Our experimental results demonstrate that the proposed embedding scheme performs consistently over a dataset of 370 medical images including their 7 different modalities. Experimental results also verify how the state-of-the-art reversible schemes can have an inconsistent performance for different modalities of medical images. Our scheme has MSSIM (Mean Structural SIMilarity) larger than 0.999 with a deterministically adaptable embedding capacity. Conclusions Our proposed image-content independent embedding scheme is modality-wise consistent, and maintains a good image quality of RONI while keeping all other pixels in the image untouched. Thus, with an appropriate watermarking framework (i.e., with the considerations of watermark generation, embedding and detection functions), our proposed scheme can be viable for the multi-modality medical image applications and distant medical services such as teleradiology and eHealth.
Resumo:
Objective This paper presents an automatic active learning-based system for the extraction of medical concepts from clinical free-text reports. Specifically, (1) the contribution of active learning in reducing the annotation effort, and (2) the robustness of incremental active learning framework across different selection criteria and datasets is determined. Materials and methods The comparative performance of an active learning framework and a fully supervised approach were investigated to study how active learning reduces the annotation effort while achieving the same effectiveness as a supervised approach. Conditional Random Fields as the supervised method, and least confidence and information density as two selection criteria for active learning framework were used. The effect of incremental learning vs. standard learning on the robustness of the models within the active learning framework with different selection criteria was also investigated. Two clinical datasets were used for evaluation: the i2b2/VA 2010 NLP challenge and the ShARe/CLEF 2013 eHealth Evaluation Lab. Results The annotation effort saved by active learning to achieve the same effectiveness as supervised learning is up to 77%, 57%, and 46% of the total number of sequences, tokens, and concepts, respectively. Compared to the Random sampling baseline, the saving is at least doubled. Discussion Incremental active learning guarantees robustness across all selection criteria and datasets. The reduction of annotation effort is always above random sampling and longest sequence baselines. Conclusion Incremental active learning is a promising approach for building effective and robust medical concept extraction models, while significantly reducing the burden of manual annotation.
Resumo:
Este texto contribuirá a que la institución de salud se organice y prepare la información necesaria para emprender el largo y tortuoso camino de la determinación de la razón costo/beneficio y de la acreditación. Además, podrá ser muy útil para los estudiantes de los programas de pregrado y posgrado de ingeniería biomédica que se quieran especializar en la gestión de tecnologías del equipamiento biomédico y la ingeniería clínica. También podrá ser usado como guía de referencia por personas que estén directamente vinculadas al sector de la salud en departamentos de mantenimiento, ingeniería clínica o de servicios hospitalarios.
Resumo:
Background In the UK occupational therapy pre-discharge home visits are routinely carried out as a means of facilitating safe transfer from the hospital to home. Whilst they are an integral part of practice, there is little evidence to demonstrate they have a positive outcome on the discharge process. Current issues for patients are around the speed of home visits and the lack of shared decision making in the process, resulting in less than 50 % of the specialist equipment installed actually being used by patients on follow-up. To improve practice there is an urgent need to examine other ways of conducting home visits to facilitate safe discharge. We believe that Computerised 3D Interior Design Applications (CIDAs) could be a means to support more efficient, effective and collaborative practice. A previous study explored practitioners perceptions of using CIDAs; however it is important to ascertain older adult’s views about the usability of technology and to compare findings. This study explores the perceptions of community dwelling older adults with regards to adopting and using CIDAs as an assistive tool for the home adaptations process. Methods Ten community dwelling older adults participated in individual interactive task-focused usability sessions with a customised CIDA, utilising the think-aloud protocol and individual semi-structured interviews. Template analysis was used to carry out both deductive and inductive analysis of the think-aloud and interview data. Initially, a deductive stance was adopted, using the three pre-determined high-level themes of the technology acceptance model (TAM): Perceived Usefulness (PU), Perceived Ease of Use (PEOU), Actual Use (AU). Inductive template analysis was then carried out on the data within these themes, from which a number of sub-thmes emerged. Results Regarding PU, participants believed CIDAs served as a useful visual tool and saw clear potential to facilitate shared understanding and partnership in care delivery. For PEOU, participants were able to create 3D home environments however a number of usability issues must still be addressed. The AU theme revealed the most likely usage scenario would be collaborative involving both patient and practitioner, as many participants did not feel confident or see sufficient value in using the application autonomously. Conclusions This research found that older adults perceived that CIDAs were likely to serve as a valuable tool which facilitates and enhances levels of patient/practitioner collaboration and empowerment. Older adults also suggested a redesign of the interface so that less sophisticated dexterity and motor functions are required. However, older adults were not confident, or did not see sufficient value in using the application autonomously. Future research is needed to further customise the CIDA software, in line with the outcomes of this study, and to explore the potential of collaborative application patient/practitioner-based deployment.
Resumo:
In many data sets from clinical studies there are patients insusceptible to the occurrence of the event of interest. Survival models which ignore this fact are generally inadequate. The main goal of this paper is to describe an application of the generalized additive models for location, scale, and shape (GAMLSS) framework to the fitting of long-term survival models. in this work the number of competing causes of the event of interest follows the negative binomial distribution. In this way, some well known models found in the literature are characterized as particular cases of our proposal. The model is conveniently parameterized in terms of the cured fraction, which is then linked to covariates. We explore the use of the gamlss package in R as a powerful tool for inference in long-term survival models. The procedure is illustrated with a numerical example. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Hypertutorials optimize five features - presentation, learner control, practice, feedback, and elaborative learning resources. Previous research showed graduate students significantly and overwhelmingly preferred Web-based hypertutorials to conventional "Book-on-the-Web" statistics or research design lessons. The current report shows that the source of hypertutorials' superiority in student evaluations of instruction lies in their hypertutorial features. Randomized comparisons between the two methodologies were conducted in two successive iterations of a graduate level health informatics research design and evaluation course. The two versions contained the same text and graphics, but differed in the presence or absence of hypertutorial features: Elaborative learning resources, practice, feedback, and amount of learner control. Students gave high evaluations to both Web-based methodologies, but consistently rated the hypertutorial lessons as superior. Significant differences localized in the hypertutorial subscale that measured student responses to hypertutorial features.
Resumo:
Over the last few decades, the ever-increasing output of scientific publications has led to new challenges to keep up to date with the literature. In the biomedical area, this growth has introduced new requirements for professionals, e.g., physicians, who have to locate the exact papers that they need for their clinical and research work amongst a huge number of publications. Against this backdrop, novel information retrieval methods are even more necessary. While web search engines are widespread in many areas, facilitating access to all kinds of information, additional tools are required to automatically link information retrieved from these engines to specific biomedical applications. In the case of clinical environments, this also means considering aspects such as patient data security and confidentiality or structured contents, e.g., electronic health records (EHRs). In this scenario, we have developed a new tool to facilitate query building to retrieve scientific literature related to EHRs. Results: We have developed CDAPubMed, an open-source web browser extension to integrate EHR features in biomedical literature retrieval approaches. Clinical users can use CDAPubMed to: (i) load patient clinical documents, i.e., EHRs based on the Health Level 7-Clinical Document Architecture Standard (HL7-CDA), (ii) identify relevant terms for scientific literature search in these documents, i.e., Medical Subject Headings (MeSH), automatically driven by the CDAPubMed configuration, which advanced users can optimize to adapt to each specific situation, and (iii) generate and launch literature search queries to a major search engine, i.e., PubMed, to retrieve citations related to the EHR under examination. Conclusions: CDAPubMed is a platform-independent tool designed to facilitate literature searching using keywords contained in specific EHRs. CDAPubMed is visually integrated, as an extension of a widespread web browser, within the standard PubMed interface. It has been tested on a public dataset of HL7-CDA documents, returning significantly fewer citations since queries are focused on characteristics identified within the EHR. For instance, compared with more than 200,000 citations retrieved by breast neoplasm, fewer than ten citations were retrieved when ten patient features were added using CDAPubMed. This is an open source tool that can be freely used for non-profit purposes and integrated with other existing systems.
Resumo:
Friedman’s article ‘What informatics is and isn’t’, presents a necessary and timely analysis of the field of informatics.
Resumo:
La rápida evolución experimentada en los últimos años por las tecnologías de Internet ha estimulado la proliferación de recursos software en varias disciplinas científicas, especialmente en bioinformática. En la mayoría de los casos, la tendencia actual es publicar dichos recursos como servicios accesibles libremente a través de Internet, utilizando tecnologías y patrones de diseño definidos para la implementación de Arquitecturas Orientadas a Servicios (SOA). La combinación simultánea de múltiples servicios dentro de un mismo flujo de trabajo abre la posibilidad de crear aplicaciones potencialmente más útiles y complejas. La integración de dichos servicios plantea grandes desafíos, tanto desde un punto de vista teórico como práctico, como por ejemplo, la localización y acceso a los recursos disponibles o la coordinación entre ellos. En esta tesis doctoral se aborda el problema de la identificación, localización, clasificación y acceso a los recursos informáticos disponibles en Internet. Con este fin, se ha definido un modelo genérico para la construcción de índices de recursos software con información extraída automáticamente de artículos de la literatura científica especializada en un área. Este modelo consta de seis fases que abarcan desde la selección de las fuentes de datos hasta el acceso a los índices creados, pasando por la identificación, extracción, clasificación y “curación” de la información relativa a los recursos. Para verificar la viabilidad, idoneidad y eficiencia del modelo propuesto, éste ha sido evaluado en dos dominios científicos diferentes—la BioInformática y la Informática Médica—dando lugar a dos índices de recursos denominados BioInformatics Resource Inventory (BIRI) y electronic-Medical Informatics Repository of Resources(e-MIR2) respectivamente. Los resultados obtenidos de estas aplicaciones son presentados a lo largo de la presente tesis doctoral y han dado lugar a varias publicaciones científicas en diferentes revistas JCR y congresos internacionales. El impacto potencial y la utilidad de esta tesis doctoral podrían resultar muy importantes teniendo en cuenta que, gracias a la generalidad del modelo propuesto, éste podría ser aplicado en cualquier disciplina científica. Algunas de las líneas de investigación futuras más relevantes derivadas de este trabajo son esbozadas al final en el último capítulo de este libro. ABSTRACT The rapid evolution experimented in the last years by the Internet technologies has stimulated the proliferation of heterogeneous software resources in most scientific disciplines, especially in the bioinformatics area. In most cases, current trends aim to publish those resources as services freely available over the Internet, using technologies and design patterns defined for the implementation of Service-Oriented Architectures (SOA). Simultaneous combination of various services into the same workflow opens the opportunity of creating more complex and useful applications. Integration of services raises great challenges, both from a theoretical to a practical point of view such as, for instance, the location and access to the available resources or the orchestration among them. This PhD thesis deals with the problem of identification, location, classification and access to informatics resources available over the Internet. On this regard, a general model has been defined for building indexes of software resources, with information extracted automatically from scientific articles from the literature specialized in the area. Such model consists of six phases ranging from the selection of data sources to the access to the indexes created, covering the identification, extraction, classification and curation of the information related to the software resources. To verify the viability, feasibility and efficiency of the proposed model, it has been evaluated in two different scientific domains—Bioinformatics and Medical Informatics—producing two resources indexes named BioInformatics Resources Inventory (BIRI) and electronic-Medical Informatics Repository of Resources (e-MIR2) respectively. The results and evaluation of those systems are presented along this PhD thesis, and they have produced different scientific publications in several JCR journals and international conferences. The potential impact and utility of this PhD thesis could be of great relevance considering that, thanks to the generality of the proposed model, it could be successfully extended to any scientific discipline. Some of the most relevant future research lines derived from this work are outlined at the end of this book.