975 resultados para Mean-field model
Resumo:
We study numerically the out-of-equilibrium dynamics of the hypercubic cell spin glass in high dimensionalities. We obtain evidence of aging effects qualitatively similar both to experiments and to simulations of low-dimensional models. This suggests that the Sherrington-Kirkpatrick model as well as other mean-field finite connectivity lattices can be used to study these effects analytically.
Resumo:
Brain activity can be measured non-invasively with functional imaging techniques. Each pixel in such an image represents a neural mass of about 105 to 107 neurons. Mean field models (MFMs) approximate their activity by averaging out neural variability while retaining salient underlying features, like neurotransmitter kinetics. However, MFMs incorporating the regional variability, realistic geometry and connectivity of cortex have so far appeared intractable. This lack of biological realism has led to a focus on gross temporal features of the EEG. We address these impediments and showcase a "proof of principle" forward prediction of co-registered EEG/fMRI for a full-size human cortex in a realistic head model with anatomical connectivity, see figure 1. MFMs usually assume homogeneous neural masses, isotropic long-range connectivity and simplistic signal expression to allow rapid computation with partial differential equations. But these approximations are insufficient in particular for the high spatial resolution obtained with fMRI, since different cortical areas vary in their architectonic and dynamical properties, have complex connectivity, and can contribute non-trivially to the measured signal. Our code instead supports the local variation of model parameters and freely chosen connectivity for many thousand triangulation nodes spanning a cortical surface extracted from structural MRI. This allows the introduction of realistic anatomical and physiological parameters for cortical areas and their connectivity, including both intra- and inter-area connections. Proper cortical folding and conduction through a realistic head model is then added to obtain accurate signal expression for a comparison to experimental data. To showcase the synergy of these computational developments, we predict simultaneously EEG and fMRI BOLD responses by adding an established model for neurovascular coupling and convolving "Balloon-Windkessel" hemodynamics. We also incorporate regional connectivity extracted from the CoCoMac database [1]. Importantly, these extensions can be easily adapted according to future insights and data. Furthermore, while our own simulation is based on one specific MFM [2], the computational framework is general and can be applied to models favored by the user. Finally, we provide a brief outlook on improving the integration of multi-modal imaging data through iterative fits of a single underlying MFM in this realistic simulation framework.
Resumo:
A model describing dissociation of monoprotonic acid and a method for the determination of its pK value are presented. The model is based on a mean field approximation. The Poisson-Boltzmann equation, adopting spherical symmetry, is numerically solved, and the solution of its linearized form is written. By use of the pH values of a dilution experiment of galacturonic acid as the entry data, the proposed method allowed estimation of the value of pK = 3.25 at a temperature of 25 degrees C. Values for the complex dimensions and dissociation degree are calculated using experimental pH values for solution concentration values ranging from 0.1 to 60 mM. The present analysis leads to the conclusion that the Poisson-Boltzmann equation or its linear form is equally suited for the description of such systems.
Resumo:
We use relativistic mean field theory, which includes scalar and vector mesons, to calculate the binding energy and charge radii in 125Cs - 139Cs. We then evaluate the nuclear structure corrections to the weak charges for a series of cesium isotopes using different parameters and estimate their uncertainty in the framework of this model.
Resumo:
We analytically study the input-output properties of a neuron whose active dendritic tree, modeled as a Cayley tree of excitable elements, is subjected to Poisson stimulus. Both single-site and two-site mean-field approximations incorrectly predict a nonequilibrium phase transition which is not allowed in the model. We propose an excitable-wave mean-field approximation which shows good agreement with previously published simulation results [Gollo et al., PLoS Comput. Biol. 5, e1000402 (2009)] and accounts for finite-size effects. We also discuss the relevance of our results to experiments in neuroscience, emphasizing the role of active dendrites in the enhancement of dynamic range and in gain control modulation.
Resumo:
The Curie-Weiss model is defined by ah Hamiltonian according to spins interact. For some particular values of the parameters, the sum of the spins normalized with square-root normalization converges or not toward Gaussian distribution. In the thesis we investigate some correlations between the behaviour of the sum and the central limit for interacting random variables.
Resumo:
We derive a mean field algorithm for binary classification with Gaussian processes which is based on the TAP approach originally proposed in Statistical Physics of disordered systems. The theory also yields an approximate leave-one-out estimator for the generalization error which is computed with no extra computational cost. We show that from the TAP approach, it is possible to derive both a simpler 'naive' mean field theory and support vector machines (SVM) as limiting cases. For both mean field algorithms and support vectors machines, simulation results for three small benchmark data sets are presented. They show 1. that one may get state of the art performance by using the leave-one-out estimator for model selection and 2. the built-in leave-one-out estimators are extremely precise when compared to the exact leave-one-out estimate. The latter result is a taken as a strong support for the internal consistency of the mean field approach.
Resumo:
In this thesis, we consider N quantum particles coupled to collective thermal quantum environments. The coupling is energy conserving and scaled in the mean field way. There is no direct interaction between the particles, they only interact via the common reservoir. It is well known that an initially disentangled state of the N particles will remain disentangled at times in the limit N -> [infinity]. In this thesis, we evaluate the η-body reduced density matrix (tracing over the reservoirs and the N - η remaining particles). We identify the main disentangled part of the reduced density matrix and obtain the first order correction term in 1/N. We show that this correction term is entangled. We also estimate the speed of convergence of the reduced density matrix as N -> [infinity]. Our model is exactly solvable and it is not based on numerical approximation.
Resumo:
Recent theoretical advances predict the existence, deep into the glass phase, of a novel phase transition, the so-called Gardner transition. This transition is associated with the emergence of a complex free energy landscape composed of many marginally stable sub-basins within a glass metabasin. In this study, we explore several methods to detect numerically the Gardner transition in a simple structural glass former, the infinite-range Mari-Kurchan model. The transition point is robustly located from three independent approaches: (i) the divergence of the characteristic relaxation time, (ii) the divergence of the caging susceptibility, and (iii) the abnormal tail in the probability distribution function of cage order parameters. We show that the numerical results are fully consistent with the theoretical expectation. The methods we propose may also be generalized to more realistic numerical models as well as to experimental systems.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
We summarise the properties and the fundamental mathematical results associated with basic models which describe coagulation and fragmentation processes in a deterministic manner and in which cluster size is a discrete quantity (an integer multiple of some basic unit size). In particular, we discuss Smoluchowski's equation for aggregation, the Becker-Döring model of simultaneous aggregation and fragmentation, and more general models involving coagulation and fragmentation.
Resumo:
Since dilute Bose gas condensates were first experimentally produced, the Gross-Pitaevskii equation has been successfully used as a descriptive tool. As a mean-field equation, it cannot by definition predict anything about the many-body quantum statistics of condensate. We show here that there are a class of dynamical systems where it cannot even make successful predictions about the mean-field behavior, starting with the process of evaporative cooling by which condensates are formed. Among others are parametric processes, such as photoassociation and dissociation of atomic and molecular condensates.
Resumo:
When a mixture is confined, one of the phases can condense out. This condensate, which is otherwise metastable in the bulk, is stabilized by the presence of surfaces. In a sphere-plane geometry, routinely used in atomic force microscope and surface force apparatus, it, can form a bridge connecting the surfaces. The pressure drop in the bridge gives rise to additional long-range attractive forces between them. By minimizing the free energy of a binary mixture we obtain the force-distance curves as well as the structural phase diagram of the configuration with the bridge. Numerical results predict a discontinuous transition between the states with and without the bridge and linear force-distance curves with hysteresis. We also show that similar phenomenon can be observed in a number of different systems, e.g., liquid crystals and polymer mixtures. (C). 2004 American Institute of Physics.
Resumo:
En este artículo, a partir de la inversa de la matriz de varianzas y covarianzas se obtiene el modelo Esperanza-Varianza de Markowitz siguiendo un camino más corto y matemáticamente riguroso. También se obtiene la ecuación de equilibrio del CAPM de Sharpe.
Resumo:
ic first-order transition line ending in a critical point. This critical point is responsible for the existence of large premartensitic fluctuations which manifest as broad peaks in the specific heat, not always associated with a true phase transition. The main conclusion is that premartensitic effects result from the interplay between the softness of the anomalous phonon driving the modulation and the magnetoelastic coupling. In particular, the premartensitic transition occurs when such coupling is strong enough to freeze the involved mode phonon. The implication of the results in relation to the available experimental data is discussed.