996 resultados para McAuley Water Street Mission.
Resumo:
Poultry grown on litter floors are in contact with their own waste products. The waste material needs to be carefully managed to reduce food safety risks and to provide conditions that are comfortable and safe for the birds. Water activity (Aw) is an important thermodynamic property that has been shown to be more closely related to microbial, chemical and physical properties of natural products than moisture content. In poultry litter, Aw is relevant for understanding microbial activity; litter handling and rheological properties; and relationships between in-shed relative humidity and litter moisture content. We measured the Aw of poultry litter collected throughout a meat chicken grow-out (from fresh pine shavings bedding material to day 52) and over a range of litter moisture content (10–60%). The Aw increased non-linearly from 0.71 to 1.0, and reached a value of 0.95 when litter moisture content was only 22–33%. Accumulation of manure during the grow-out reduced Aw for the same moisture content. These results are relevant for making decisions regarding litter re-use in multiple grow-outs as well as setting targets for litter moisture content to minimise odour, microbial risks and to ensure necessary litter physical conditions are maintained during a grow-out. Methods to predict Aw in poultry litter from moisture content are proposed.
Resumo:
In this study, the Tropical Rainfall Measurement Mission based Microwave Imager estimates (2A12) have been used to compare and contrast the characteristics of cloud liquid water and ice over the Indian land region and the ocean surrounding it, during the premonsoon (May) and monsoon (June-September) seasons. Based on the spatial homogeneity of rainfall, we have selected five regions for our study (three over ocean, two over land). Comparison across three ocean regions suggests that the cloud liquid water (CLW) over the orographically influenced Arabian Sea (close to the Indian west coast) behaves differently from the CLW over a trapped ocean (Bay of Bengal) or an open ocean (equatorial Indian Ocean). Specifically, the Arabian Sea region shows higher liquid water for a lower range of rainfall, whereas the Bay of Bengal and the equatorial Indian Ocean show higher liquid water for a higher range of rainfall. Apart from geographic differences, we also documented seasonal differences by comparing CLW profiles between monsoon and premonsoon periods, as well as between early and peak phases of the monsoon. We find that the CLW during the lean periods of rainfall (May or June) is higher than during the peak and late monsoon season (July-September) for raining clouds. As active and break phases are important signatures of the monsoon progression, we also analysed the differences in CLW during various phases of the monsoon, namely, active, break, active-to-break and break-to-active transition phases. We find that the cloud liquid water content during the break-to-active transition phase is significantly higher than during the active-to-break transition phase over central India. We speculate that this could be attributed to higher amount of aerosol loading over this region during the break phase. We lend credence to this aerosol-CLW/rain association by comparing the central Indian CLW with that over southeast Asia (where the aerosol loading is significantly smaller) and find that in the latter region, there are no significant differences in CLW during the different phases of the monsoon. While our hypothesis needs to be further investigated with numerical models, the results presented in this study can potentially serve as a good benchmark in evaluating the performance of cloud resolving models over the Indian region.
Resumo:
Up to now, high-resolution mapping of surface water extent from satellites has only been available for a few regions, over limited time periods. The extension of the temporal and spatial coverage was difficult, due to the limitation of the remote sensing technique e.g., the interaction of the radiation with vegetation or cloud for visible observations or the temporal sampling with the synthetic aperture radar (SAR)]. The advantages and the limitations of the various satellite techniques are reviewed. The need to have a global and consistent estimate of the water surfaces over long time periods triggered the development of a multi-satellite methodology to obtain consistent surface water all over the globe, regardless of the environments. The Global Inundation Extent from Multi-satellites (GIEMS) combines the complementary strengths of satellite observations from the visible to the microwave, to produce a low-resolution monthly dataset () of surface water extent and dynamics. Downscaling algorithms are now developed and applied to GIEMS, using high-spatial-resolution information from visible, near-infrared, and synthetic aperture radar (SAR) satellite images, or from digital elevation models. Preliminary products are available down to 500-m spatial resolution. This work bridges the gaps and prepares for the future NASA/CNES Surface Water Ocean Topography (SWOT) mission to be launched in 2020. SWOT will delineate surface water extent estimates and their water storage with an unprecedented spatial resolution and accuracy, thanks to a SAR in an interferometry mode. When available, the SWOT data will be adopted to downscale GIEMS, to produce a long time series of water surfaces at global scale, consistent with the SWOT observations.
Resumo:
The Austrian-Ceylonese hydrobiological mission of 1970 investigated and made collections from 36 flowing water systems (brooks, torrents, rivers); of these, 34 water systems were in the mountains regions of south-west and south-east of Sri Lanka. In the crystalline mountain region, the water systems are extremely poor in electrolytes, very soft and slightly acid; these torrential streams have strong falls, high flow velocities and boulder bottoms. The water temperatures increase from the sources and brooks at 2,000 m altitude to the mouths from 15°C to 28°C. The density of animal population (macro and meso-fauna) increases from the river bank regions (and pools) towards the sections with strong current and reaches on the rocks in the cascades a density of 500 to appr. 750 individuals/1/16m².
Resumo:
A total of 378 specimens from 25 collecting localities belonging to 31 different species of fish collected mainly from the rivers of the hilly and mountain regions of the south-western and southern Ceylon have been identified and recorded. Ecological data and water analyses of these collecting localities are given.
Resumo:
In the present study the specimens collected by the Austrian-Ceylones hydrobiological mission 1970 are described. The freshwater gastropods in this study were collected from 100 different localities, mostly running waters, but some were also collected from stagnant waters like pools, irrigated paddy fields, swamps and water reservoirs (tanks). Listed from these localities are 31 species (and subspecies) 28 species are Streptoneura (=Prosobranchia), 3 species are Euthyneura-Pulmonata Basommatophora.
Resumo:
Water service providers (WSPs) in the UK have statutory obligations to supply drinking water to all customers that complies with increasingly stringent water quality regulations and minimum flow and pressure criteria. At the same time, the industry is required by regulators and investors to demonstrate increasing operational efficiency and to meet a wide range of performance criteria that are expected to improve year-on-year. Most WSPs have an ideal for improving the operation of their water supply systems based on increased knowledge and understanding of their assets and a shift to proactive management followed by steadily increasing degrees of system monitoring, automation and optimisation. The fundamental mission is, however, to ensure security of supply, with no interruptions and water quality of the highest standard at the tap. Unfortunately, advanced technologies required to fully understand, manage and automate water supply system operation either do not yet exist, are only partially evolved, or have not yet been reliably proven for live water distribution systems. It is this deficiency that the project NEPTUNE seeks to address by carrying out research into 3 main areas; these are: data and knowledge management; pressure management (including energy management); and the associated complex decision support systems on which to base interventions. The 3-year project started in April of 2007 and has already resulted in a number of research findings under the three main research priority areas (RPA). The paper summarises in greater detail the overall project objectives, the RPA activities and the areas of research innovation that are being undertaken in this major, UK collaborative study. Copyright 2009 ASCE.
Resumo:
Satellite altimetry has revolutionized our understanding of ocean dynamics thanks to frequent sampling and global coverage. Nevertheless, coastal data have been flagged as unreliable due to land and calm water interference in the altimeter and radiometer footprint and uncertainty in the modelling of high-frequency tidal and atmospheric forcing. Our study addresses the first issue, i.e. altimeter footprint contamination, via retracking, presenting ALES, the Adaptive Leading Edge Subwaveform retracker. ALES is potentially applicable to all the pulse-limited altimetry missions and its aim is to retrack both open ocean and coastal data with the same accuracy using just one algorithm. ALES selects part of each returned echo and models it with a classic ”open ocean” Brown functional form, by means of least square estimation whose convergence is found through the Nelder-Mead nonlinear optimization technique. By avoiding echoes from bright targets along the trailing edge, it is capable of retrieving more coastal waveforms than the standard processing. By adapting the width of the estimation window according to the significant wave height, it aims at maintaining the accuracy of the standard processing in both the open ocean and the coastal strip. This innovative retracker is validated against tide gauges in the Adriatic Sea and in the Greater Agulhas System for three different missions: Envisat, Jason-1 and Jason-2. Considerations of noise and biases provide a further verification of the strategy. The results show that ALES is able to provide more reliable 20-Hz data for all three missions in areas where even 1-Hz averages are flagged as unreliable in standard products. Application of the ALES retracker led to roughly a half of the analysed tracks showing a marked improvement in correlation with the tide gauge records, with the rms difference being reduced by a factor of 1.5 for Jason-1 and Jason-2 and over 4 for Envisat in the Adriatic Sea (at the closest point to the tide gauge).
Resumo:
Objectives: Acute lung injury and the acute respiratory distress syndrome are characterized by noncardiogenic pulmonary edema, which can be assessed by measurement of extravascular lung water. Traditionally, extravascular lung water has been indexed to actual body weight (mL/kg). Because lung size is dependent on height rather than weight, we hypothesized indexing to predicted body weight may be a better predictor of mortality in acute lung injury/acute respiratory distress syndrome.
Resumo:
This article shows how the elite origins and religious mission of the Regent Street Polytechnic encouraged participation in amateur sport in London, and promoted the suburb of Chiswick as a global context for competitive sports. From the 1880s to the outbreak of World War 2, the Polytechnic and its facilities forged synergies between the city centre and the burgeoning suburbs in London, engendering a city-wide culture of amateur sports, and embedding the Polytechnic into a global network of athletes. Suburbs are typically presented by writers as being ‘on the edge’ of metropolitan life, but such perspectives are wrong. The West London suburb of Chiswick was the home of Polytechnic facilities that provided a dynamic context for the internationalization and modernization of sport in the capital.
Resumo:
Detailed analyses of persistent organic pollutants (POPs) such as organochlorine pesticides (OCPs), hexachlorocyclohexane (HCH) isomers (HCHs), dichlorodiphenyltrichloro ethane (DDT) and its metabolites (DDTs) and congeners of polychlorinated biphenyls (PCBs) in soil and surface water from the northeastern São Paulo, Brazil allowed the evaluation of the contamination status, distribution and possible pollution sources. The pesticides and PCBs demonstrated markedly different distributions, reflecting different agricultural, domestic and industrial usage in each region studied. The ranges of HCH, DDT, and PCBs concentrations in the soil samples were 0.05-0.92, 0.12-11.01, 0.02-0.25 ng g(-1) dry wt, respectively, and in the surface water samples were 0.02-0.6, 0.02-0.58 and 0.02-0.5 ng l(-1), respectively. Overall elevated levels of DDT and PCB were recorded in region 2, a site very close to melting, automotive batteries industries, and agricultural practice regions. High ratios of metabolites of DDT to DDT isomers revealed the recent use of DDT in this environment. The sources of contamination are closely related to human activities, such as domestic and industrial discharge, street runoff, agricultural pesticides and soil erosion, due to deforestation as well as atmospheric transport. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The first Brazilian mission to an asteroid is being planned. The target is the asteroid 2001 SN263, which has a NEA orbit of class AMOR. Spectral analysis indicated that this is a C-type asteroid. This type of asteroids are dark and difficult to be studied from Earth. They hold clues of the initial stages of planetary formation and also the origin of water and life on Earth. In fact, radar data showed that 2001 SN263 is composed of three bodies with diameters of about 2.8 km, 1.1 km and 0.4 km. Therefore, the spacecraft will have the opportunity to explore three bodies on the same trip. The mission is scheduled to be launched in 2015, reaching the asteroid in 2018. It will be used a small spacecraft (150 kg) with 30 kg for the payload. The set of scientific instruments being considered to explore the target of this mission include an Imaging Camera, a Laser Rangefinder, an Infrared Spectrometer, a Synthetic Aperture Radar and a Mass Spectrometer. The main measurements to be made include the bulk properties (size, shape, mass, density, dynamics, spin state), the internal properties (structure, gravity field) and surface properties (mineralogy, morphology, elemental composition). The mission also opens an opportunity for some relevant experiments, not directly related to the target. Two such experiments will take benefit from being on board of the spacecraft along the journey to the asteroid system, which will take about three years. The first is an astrobiology experiment. The main goal of this experiment is to determine the viability of the microorganisms survival in extraterrestrial environments simulated in laboratory (chemical atmosphere, temperature, desiccation, vacuum, microgravity and radiation). The second experiment is a plasma package. The main objectives of this experiment are to study the structure and electrodynamics of plasma along the trajectory, the plasma instability processes and the density and temperature of plasma of solar wind origin along the trajectory and near the asteroids. This mission represents a great challenge for the Brazilian space program. It is being structured to allow the full engagement of the Brazilian universities and technological companies in all the necessary developments to be carried out. In this paper, we present some aspects of this mission and details of the payload that will be used and the scientific expectations. Copyright ©2010 by the International Astronautical Federation. All rights reserved.
Resumo:
The Amazon basin is a region of constant scientific interest due to its environmental importance and its biodiversity and climate on a global scale. The seasonal variations in water volume are one of the examples of topics studied nowadays. In general, the variations in river levels depend primarily on the climate and physics characteristics of the corresponding basins. The main factor which influences the water level in the Amazon Basin is the intensive rainfall over this region as a consequence of the humidity of the tropical climate. Unfortunately, the Amazon basin is an area with lack of water level information due to difficulties in access for local operations. The purpose of this study is to compare and evaluate the Equivalent Water Height (Ewh) from GRACE (Gravity Recovery And Climate Experiment) mission, to study the connection between water loading and vertical variations of the crust due to the hydrologic. In order to achieve this goal, the Ewh is compared with in-situ information from limnimeter. For the analysis it was computed the correlation coefficients, phase and amplitude of GRACE Ewh solutions and in-situ data, as well as the timing of periods of drought in different parts of the basin. The results indicated that vertical variations of the lithosphere due to water mass loading could reach 7 to 5 cm per year, in the sedimentary and flooded areas of the region, where water level variations can reach 10 to 8 m.
Resumo:
The Amazon basin is a region of constant scientific interest due to its environmental importance and its biodiversity and climate on a global scale. The seasonal variations in water volume are one of the examples of topics studied nowadays. In general, the variations in river levels depend primarily on the climate and physics characteristics of the corresponding basins. The main factor which influences the water level in the Amazon Basin is the intensive rainfall over this region as a consequence of the humidity of the tropical climate. Unfortunately, the Amazon basin is an area with lack of water level information due to difficulties in access for local operations. The purpose of this study is to compare and evaluate the Equivalent Water Height (Ewh) from GRACE (Gravity Recovery And Climate Experiment) mission, to study the connection between water loading and vertical variations of the crust due to the hydrologic. In order to achieve this goal, the Ewh is compared with in-situ information from limnimeter. For the analysis it was computed the correlation coefficients, phase and amplitude of GRACE Ewh solutions and in-situ data, as well as the timing of periods of drought in different parts of the basin. The results indicated that vertical variations of the lithosphere due to water mass loading could reach 7 to 5 cm per year, in the sedimentary and flooded areas of the region, where water level variations can reach 10 to 8 m.
Resumo:
Direct sublimation of a comet nucleus surface is usually considered to be the main source of gas in the coma of a comet. However, evidence from a number of comets including the recent spectacular images of Comet 103P/Hartley 2 by the EPOXI mission indicates that the nucleus alone may not be responsible for all, or possibly at times even most, of the total amount of gas seen in the coma. Indeed, the sublimation of icy grains, which have been injected into the coma, appears to constitute an important source. We use the fully-kinetic Direct Simulation Monte Carlo model of Tenishev et al. (Tenishev, V.M., Combi, M.R., Davidsson, B. [2008]. Astrophys. J., 685, 659−677; Tenishev, V.M., Combi, M.R., Rubin, M. [2011]. Astrophys. J., 732) to reproduce the measurements of column density and rotational temperature of water in Comet 73P-B/Schwassmann–Wachmann 3 obtained with a very high spatial resolution of ∼30 km using IRCS/Subaru in May 2006 (Bonev, B.P., Mumma, M.J., Kawakita, H., Kobayashi, H., Villanueva, G.L. [2008]. Icarus, 196, 241−248). For gas released solely from the cometary nucleus at a heliocentric distance of 1 AU, modeled rotational temperatures start at 110 K close to the surface and decrease to only several tens of degrees by 10–20 nucleus radii. However, the measured decay of both rotational temperature and column density with distance from the nucleus is much slower than predicted by this simple model. The addition of a substantial (distributed) source of gas from icy grains in the model slows the decay in rotational temperature and provides a more gradual drop in column density profiles. Together with a contribution of rotational heating of water molecules by electrons, the combined effects allow a much better match to the IRCS/Subaru observations. From the spatial distributions of water abundance and temperature measured in 73P/SW3-B, we have identified and quantified multiple mechanisms of release. The application of this tool to other comets may permit such studies over a range of heliocentric and geocentric distances.