928 resultados para Maximum nodal injection
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq)
Resumo:
The effect of the swirl component of air injection on the performance of an airlift pump was examined experimentally. An airlift pump is a device that pumps a liquid or slurry using only gas injection. In this study, the liquid used was water and the injected gas was air. The effect of the air swirl was determined by measuring the water discharge from an airlift pump with an air injection nozzle in which the air flow had both axial and tangential components and then repeating the tests with a nozzle with only axial injection. The induced water flow was measured using an orifice meter in the supply pipeline. Tests were run for air pressures ranging from 10 to 30 pounds per square inch, gauge (psig), at flow rates from 5 standard cubic feet per minute (scfm) up the maximum values attainable at the given pressure (usually in the range from 20 to 35 scfm). The nozzle with only axial injection produced a water flow rate that wasequivalent to or better than that induced by the nozzle with swirl. The swirl component of air injection was found to be detrimental to pump performance for all but the smallest air injection flow rate. Optimum efficiency was found for air injection pressures of 10 psig to 15 psig. In addition, the effect of using auxiliary tangential injection of water to create a swirl component in the riser before air injection on the overall capacity (i.e., flow rate) and efficiencyof the pump was examined. Auxiliary tangential water injection was found to have no beneficial effect on the pump capacity or performance in the present system.
Resumo:
A novel computer-assisted injection device for the delivery of highly viscous bone cements in vertebroplasty is presented. It addresses the shortcomings of manual injection systems ranging from low-pressure and poor level of control to device failure. The presented instrument is capable of generating a maximum pressure of 5000 kPa in traditional 6-ml syringes and provides an advanced control interface for precise cement delivery from outside radiation fields emitted by intraoperative imaging systems. The integrated real-time monitoring of injection parameters, such as flow-rate, volume, pressure, and viscosity, simplifies consistent documentation of interventions and establishes a basis for the identification of safe injection protocols on the longer term. Control algorithms prevent device failure due to overloading and provide means to immediately stop cement flow to avoid leakage into adjacent tissues.
Resumo:
BACKGROUND: Injuries of the recurrent laryngeal nerve with consecutive vocal cord paralysis is a typical complication in chest, esophageal, thyroideal, and neck surgery. Glottic insufficiency secondary to such a lesion can be treated by endolaryngeal vocal cord augmentation (injection laryngoplasty). Many different substances have been used, often showing complications or disadvantages. This study reports on the use of injectable polydimethylsiloxane (PDMS), with special regard to the long-term results. METHODS: In this prospective study, 21 patients with unilateral vocal cord paralysis underwent injection laryngoplasty using PDMS at a volume of 0.5-1.0 ml. Preoperatively, 6 weeks and 12 months after the injection the following parameters concerning patients' voice were evaluated: Glottic closure by videolaryngostroboscopy, maximum phonation time, voice range, voice dynamic, jitter, shimmer, noise-to-harmonic-ratio, and roughness, breathiness, and hoarseness (RBH). In addition, patients were asked to give their own evaluation of how satisfied they felt with their voice and of the handicaps it caused them. RESULTS: Postoperatively an improvement was evident in all the parameters that were investigated, and this significant improvement was still in evidence for most of the parameters more than one year after the injection. In our study no complications were observed more than one year after injection. CONCLUSION: PDMS is a safe substance for injection laryngoplasty in unilateral vocal cord paresis. Objective and subjective parameters confirm its effectiveness. It is suitable for obtaining satisfying results in the reestablishment of the patient's voice and communication ability.
Resumo:
OBJECTIVE: The purpose of this study was to compare a standard peripheral end-hole angiocatheter with those modified with side holes or side slits using experimental optical techniques to qualitatively compare the contrast material exit jets and using numeric techniques to provide flow visualization and quantitative comparisons. MATERIALS AND METHODS: A Schlieren imaging system was used to visualize the angiocatheter exit jet fluid dynamics at two different flow rates. Catheters were modified by drilling through-and-through side holes or by cutting slits into the catheters. A commercial computational fluid dynamics package was used to calculate numeric results for various vessel diameters and catheter orientations. RESULTS: Experimental images showed that modifying standard peripheral IV angiocatheters with side holes or side slits qualitatively changed the overall flow field and caused the exiting jet to become less well defined. Numeric calculations showed that the addition of side holes or slits resulted in a 9-30% reduction of the velocity of contrast material exiting the end hole of the angiocatheter. With the catheter tip directed obliquely to the wall, the maximum wall shear stress was always highest for the unmodified catheter and was always lowest for the four-side-slit catheter. CONCLUSION: Modified angiocatheters may have the potential to reduce extravasation events in patients by reducing vessel wall shear stress.
Resumo:
PURPOSE: To evaluate a widely used nontunneled triple-lumen central venous catheter in order to determine whether the largest of the three lumina (16 gauge) can tolerate high flow rates, such as those required for computed tomographic angiography. MATERIALS AND METHODS: Forty-two catheters were tested in vitro, including 10 new and 32 used catheters (median indwelling time, 5 days). Injection pressures were continuously monitored at the site of the 16-gauge central venous catheter hub. Catheters were injected with 300 and 370 mg of iodine per milliliter of iopamidol by using a mechanical injector at increasing flow rates until the catheter failed. The infusion rate, hub pressure, and location were documented for each failure event. The catheter pressures generated during hand injection by five operators were also analyzed. Mean flow rates and pressures at failure were compared by means of two-tailed Student t test, with differences considered significant at P < .05. RESULTS: Injections of iopamidol with 370 mg of iodine per milliliter generate more pressure than injections of iopamidol with 300 mg of iodine per milliliter at the same injection rate. All catheters failed in the tubing external to the patient. The lowest flow rate at which catheter failure occurred was 9 mL/sec. The lowest hub pressure at failure was 262 pounds per square inch gauge (psig) for new and 213 psig for used catheters. Hand injection of iopamidol with 300 mg of iodine per milliliter generated peak hub pressures ranging from 35 to 72 psig, corresponding to flow rates ranging from 2.5 to 5.0 mL/sec. CONCLUSION: Indwelling use has an effect on catheter material property, but even for used catheters there is a substantial safety margin for power injection with the particular triple-lumen central venous catheter tested in this study, as the manufacturer's recommendation for maximum pressure is 15 psig.
Resumo:
Injection drug use is the third most frequent risk factor for new HIV infections in the United States. A dual mode of exposure: unsafe drug using practices and risky sexual behaviors underlies injection drug users' (IDUs) risk for HIV infection. This research study aims to characterize patterns of drug use and sexual behaviors and to examine the social contexts associated with risk behaviors among a sample of injection drug users. ^ This cross-sectional study includes 523 eligible injection drug users from Houston, Texas, recruited into the 2009 National HIV Behavioral Surveillance project. Three separate set of analyses were carried out. First, using latent class analysis (LCA) and maximum likelihood we identified classes of behavior describing levels of HIV risk, from nine drug and sexual behaviors. Second, eight separate multivariable regression models were built to examine the odds of reporting a given risk behavior. We constructed the most parsimonious multivariable model using a manual backward stepwise process. Third, we examined whether HIV serostatus knowledge (self-reported positive, negative, or unknown serostatus) is associated with drug use and sexual HIV risk behaviors. ^ Participants were mostly male, older, and non-Hispanic Black. Forty-two percent of our sample had behaviors putting them at high risk, 25% at moderate risk, and 33% at low risk for HIV infection. Individuals in the High-risk group had the highest probability of risky behaviors, categorized as almost always sharing needles (0.93), seldom using condoms (0.10), reporting recent exchange sex partners (0.90), and practicing anal sex (0.34). We observed that unsafe injecting practices were associated with high risk sexual behaviors. IDUs who shared needles had higher odds of having anal sex (OR=2.89, 95%CI: 1.69-4.92) and unprotected sex (OR=2.66, 95%CI: 1.38-5.10) at last sex. Additionally, homelessness was associated with needle sharing (OR=2.24, 95% CI: 1.34-3.76) and cocaine use was associated with multiple sex partners (OR=1.82, 95% CI: 1.07-3.11). Furthermore, twenty-one percent of the sample was unaware of their HIV serostatus. The three groups were not different from each other in terms of drug-use behaviors: always using a new sterile needle, or in sharing needles or drug preparation equipment. However, IDUs unaware of their HIV serostatus were 33% more likely to report having more than three sexual partners in the past 12 months; 45% more likely to report to have unprotected sex and 85% more likely to use drug and or alcohol during or before at last sex compared to HIV-positive IDUs. ^ This analysis underscores the merit of LCA approach to empirically categorize injection drug users into distinct classes and identify their risk pattern using multiple indicators and our results show considerable overlap of high risk sexual and drug use behaviors among the high-risk class members. The observed clustering pattern of drug and sexual risk behavior among this population confirms that injection drug users do not represent a homogeneous population in terms of HIV risk. These findings will help develop tailored prevention programs.^
Resumo:
Radiation therapy for patients with intact cervical cancer is frequently delivered using primary external beam radiation therapy (EBRT) followed by two fractions of intracavitary brachytherapy (ICBT). Although the tumor is the primary radiation target, controlling microscopic disease in the lymph nodes is just as critical to patient treatment outcome. In patients where gross lymphadenopathy is discovered, an extra EBRT boost course is delivered between the two ICBT fractions. Since the nodal boost is an addendum to primary EBRT and ICBT, the prescription and delivery must be performed considering previously delivered dose. This project aims to address the major issues of this complex process for the purpose of improving treatment accuracy while increasing dose sparing to the surrounding normal tissues. Because external beam boosts to involved lymph nodes are given prior to the completion of ICBT, assumptions must be made about dose to positive lymph nodes from future implants. The first aim of this project was to quantify differences in nodal dose contribution between independent ICBT fractions. We retrospectively evaluated differences in the ICBT dose contribution to positive pelvic nodes for ten patients who had previously received external beam nodal boost. Our results indicate that the mean dose to the pelvic nodes differed by up to 1.9 Gy between independent ICBT fractions. The second aim is to develop and validate a volumetric method for summing dose of the normal tissues during prescription of nodal boost. The traditional method of dose summation uses the maximum point dose from each modality, which often only represents the worst case scenario. However, the worst case is often an exaggeration when highly conformal therapy methods such as intensity modulated radiation therapy (IMRT) are used. We used deformable image registration algorithms to volumetrically sum dose for the bladder and rectum and created a voxel-by-voxel validation method. The mean error in deformable image registration results of all voxels within the bladder and rectum were 5 and 6 mm, respectively. Finally, the third aim explored the potential use of proton therapy to reduce normal tissue dose. A major physical advantage of protons over photons is that protons stop after delivering dose in the tumor. Although theoretically superior to photons, proton beams are more sensitive to uncertainties caused by interfractional anatomical variations, and must be accounted for during treatment planning to ensure complete target coverage. We have demonstrated a systematic approach to determine population-based anatomical margin requirements for proton therapy. The observed optimal treatment angles for common iliac nodes were 90° (left lateral) and 180° (posterior-anterior [PA]) with additional 0.8 cm and 0.9 cm margins, respectively. For external iliac nodes, lateral and PA beams required additional 0.4 cm and 0.9 cm margins, respectively. Through this project, we have provided radiation oncologists with additional information about potential differences in nodal dose between independent ICBT insertions and volumetric total dose distribution in the bladder and rectum. We have also determined the margins needed for safe delivery of proton therapy when delivering nodal boosts to patients with cervical cancer.
Resumo:
The Paleocene/Eocene Thermal Maximum (PETM, ca. 55 Ma) is an abrupt, profound perturbation of climate and the carbon cycle associated with a massive injection of isotopically light carbon into the ocean-atmosphere system. As such, it provides an analogue for understanding the interplay between phytoplankton and climate under modern anthropogenic global-warming conditions. However, the accompanying enhanced dissolution poses uncertainty on the reconstruction of the affected ecology and productivity. We present a high-resolution record of bulk isotopes and nannofossil absolute abundance from Ocean Drilling Program (ODP) Site 1135 on the Kerguelen Plateau, Southern Indian Ocean to quantitatively constrain for the first time the influence of dissolution on paleoecological reconstruction. Our bulk-carbonate isotope record closely resembles that of the classic PETM site at ODP Site 690 on the opposite side of the Antarctic continent, and its correlation with those from ODP Sites 690, 1262 and 1263 records allows recognition of 14 precessional cycles upsection from the onset of the carbon isotopic excursion (CIE). This, together with a full range of common Discoasteraraneus and an abundance crossover between Fasciculithus and Zygrhablithusbijugatus, indicates the presence of the PETM at Site 1135, a poorly known record with calcareous fossils throughout the interval. The strong correlation between the absolute abundances of Chiasmolithus and coccolith assemblages reveals a dominant paleoecological signal in the poorly preserved fossil assemblages, while the influence of dissolution is only strong during the CIE. This suggests that r-selected taxa can preserve faithful ecological information even in the severely-altered assemblages studied here, and therefore provide a strong case for the application of nannofossils to paleoecological studies in better-preserved PETM sections. The inferred nannoplankton productivity drops abruptly at the CIE onset, but rapidly increases after the CIE peak, both of which may be driven by nutrient availability related to ocean stratification and vertical mixing due to changed sea-surface temperatures.
Resumo:
The black-lip pearl oyster Pinctada margaritifera is a protandrous hermaphrodite species. Its economic value has led to the development of controlled hatchery reproduction techniques, although many aspects remain to be optimized. In order to understand reproductive mechanisms and their controlling factors, two independent experiments were designed to test hypotheses of gametogenesis and sex ratio control by environmental and hormonal factors. In one, pearl oysters were exposed under controlled conditions at different combinations of temperature (24 and 28°C) and food level (10,000 and 40,000 cells mL−1); whereas in the other, pearl oysters were conditioned under natural conditions into the lagoon and subjected to successive 17β-estradiol injections (100 μg per injection). Gametogenesis and sex ratio were assessed by histology for each treatment. In parallel, mRNA expressions of nine marker genes of the sexual pathway (pmarg-foxl2, pmarg-c43476, pmarg-c45042, pmarg-c19309, pmarg-c54338, pmarg-vit6, pmarg-zglp1, pmarg-dmrt, and pmarg-fem1-like) were investigated. Maximum maturation was observed in the treatment combining the highest temperature (28°C) and the highest microalgae concentration (40,000 cells mL−1), where the female sex tended to be maintained. Injection of 17β-estradiol induced a significant increase of undetermined stage proportion 2 weeks after the final injection. These results suggest that gametogenesis and gender in adult pearl oysters can be controlled by environmental factors and estrogens. While there were no significant effects on relative gene expression, the 3-gene-pair expression ratio model of the sexual pathway of P. margaritifera, suggest a probable dominance of genetic sex determinism without excluding a mixed sex determination mode (genetic + environmental)
Resumo:
The South Florida Water Management District (SFWMD) is responsible for managing over 2500 miles of waterways and hundreds of water control structures. Many of these control structures are experiencing erosion, known as scour, of the sediment downstream of the structure. Laboratory experiments were conducted in order to investigate the effectiveness of two-dimensional air diffusers and plate extensions (without air injection) on a 1/30 scale model of one of SFWMD gated spillway structures, the S65E gated spillway. A literature review examining the results of similar studies was conducted. The experimental design for this research was based off of previous work done on the same model. Scour of the riverbed downstream of gated spillway structures has the potential to cause serious damage, as it can expose the foundation of the structure, which can lead to collapse. This type of scour has been studied previously, but it continues to pose a risk to water control structures and needs to be studied further. The hydraulic scour channel used to conduct experiments contains a head tank, flow straighteners, gated spillway, stilling basin, scour chamber, sediment trap, and tailwater tank. Experiments were performed with two types of air diffusers. The first was a hollow, acrylic, triangular end sill with air injection holes on the upstream face, allowing for air injection upstream. The second diffuser was a hollow, acrylic rectangle that extended from the triangular end sill with air injection holes in the top face, allowing for vertical air injection, perpendicular to flow. Detailed flow and bed measurements were taken for six trials for each diffuser ranging from no air injection to 5 rows of 70 holes of 0.04" diameter. It was found that with both diffusers, the maximum amount of air injection reduced scour the most. Detailed velocity measurements were taken for each case and turbulence statistics were analyzed to determine why air injection reduces scour. It was determined that air injection reduces streamwise velocity and turbulence. Another set of experiments was performed using an acrylic extension plate with no air injection to minimize energy costs. Ten different plate lengths were tested. It was found that the location of deepest scour moved further downstream with each plate length. The 32-cm plate is recommended here. Detailed velocity measurements were taken after the cases with the 32-cm plate and no plate had reached equilibrium. This was done to better understand the flow patterns in order to determine what causes the scour reduction with the extension plates. The extension plate reduces the volume of scour, but more importantly translates the deepest point of scour downstream from the structure, lessening the risk of damage.