76 resultados para Maxent


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Species distribution models (SDM) are increasingly used to understand the factors that regulate variation in biodiversity patterns and to help plan conservation strategies. However, these models are rarely validated with independently collected data and it is unclear whether SDM performance is maintained across distinct habitats and for species with different functional traits. Highly mobile species, such as bees, can be particularly challenging to model. Here, we use independent sets of occurrence data collected systematically in several agricultural habitats to test how the predictive performance of SDMs for wild bee species depends on species traits, habitat type, and sampling technique. We used a species distribution modeling approach parametrized for the Netherlands, with presence records from 1990 to 2010 for 193 Dutch wild bees. For each species, we built a Maxent model based on 13 climate and landscape variables. We tested the predictive performance of the SDMs with independent datasets collected from orchards and arable fields across the Netherlands from 2010 to 2013, using transect surveys or pan traps. Model predictive performance depended on species traits and habitat type. Occurrence of bee species specialized in habitat and diet was better predicted than generalist bees. Predictions of habitat suitability were also more precise for habitats that are temporally more stable (orchards) than for habitats that suffer regular alterations (arable), particularly for small, solitary bees. As a conservation tool, SDMs are best suited to modeling rarer, specialist species than more generalist and will work best in long-term stable habitats. The variability of complex, short-term habitats is difficult to capture in such models and historical land use generally has low thematic resolution. To improve SDMs’ usefulness, models require explanatory variables and collection data that include detailed landscape characteristics, for example, variability of crops and flower availability. Additionally, testing SDMs with field surveys should involve multiple collection techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim Habitat loss and climate change are two major drivers of biological diversity. Here we quantify how deforestation has already changed, and how future climate scenarios may change, environmental conditions within the highly disturbed Atlantic forests of Brazil. We also examine how environmental conditions have been altered within the range of selected bird species. Location Atlantic forests of south-eastern Brazil. Methods The historical distribution of 21 bird species was estimated using Maxent. After superimposing the present-day forest cover, we examined the environmental niches hypothesized to be occupied by these birds pre- and post-deforestation using environmental niche factor analysis (ENFA). ENFA was also used to compare conditions in the entire Atlantic forest ecosystem pre- and post-deforestation. The relative influence of land use and climate change on environmental conditions was examined using analysis of similarity and principal components analysis. Results Deforestation in the region has resulted in a decrease in suitable habitat of between 78% and 93% for the Atlantic forest birds included here. Further, Atlantic forest birds today experience generally wetter and less seasonal forest environments than they did historically. Models of future environmental conditions within forest remnants suggest generally warmer conditions and lower annual variation in rainfall due to greater precipitation in the driest quarter of the year. We found that deforestation resulted in a greater divergence of environmental conditions within Atlantic forests than that predicted by climate change. Main conclusions The changes in environmental conditions that have occurred with large-scale deforestation suggest that selective regimes may have shifted and, as a consequence, spatial patterns of intra-specific variation in morphology, behaviour and genes have probably been altered. Although the observed shifts in available environmental conditions resulting from deforestation are greater than those predicted by climate change, the latter will result in novel environments that exceed temperatures in any present-day climates and may lead to biotic attrition unless organisms can adapt to these warmer conditions. Conserving intra-specific diversity over the long term will require considering both how changes in the recent past have influenced contemporary populations and the impact of future environmental change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on climate data and occurrence records, ecological niche models (ENM) are an important opportunity to identify areas at risk or vulnerable to biological invasion. These models are based on the assumption that there is a match between the climatic characteristic of native and invaded regions predicting the potential distribution of exotic species. Using new methods to measure niche overlap, we chose two exotic species fairly common in semi-arid regions of South America, Prosopis juliflora (Sw.) D.C. and Prosopis pallida (H. ; B. ex. Willd) HBK, to test the climate matching hypothesis. Our results indicate that both species occur with little niche overlap in the native region while the inverse pattern is observed in the invaded region on South America, where both species occur with high climatic overlap. Maybe some non-climate factor act limiting the spread of P. pallida on the native range. We believe that a founder effect can explain these similarities between species niche in the invaded region once the seeds planted in Brazil came from a small region on the Native range (Piura in Peru), where both species occur sympatric. Our hypothesis of a founder effect may be evident when we look at the differences between the predictions of the models built in the native and invaded ranges. Furthermore, our results indicate that P. juliflora shows high levels of climate matching between native and invaded ranges. However, conclusions about climate matching of P. pallida should be taken with caution. Our models based on climatic variables provide multiple locations suitable for occurrence of both species in regions where they still don t have occurrence records, including places of high interest for conservation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

How ecologically similar species are able to coexist has always generated great interest in the scientific community. Classical niche theory predicts that species coexistence is only possible when they segregate in at least one dimension of the ecological niche, thus leading to ecological differentiation among species. However, recent work has shown that species that are more similar in some ecological traits are the ones more prone to be able to coexist (environmental filter). The knowledge of how these forces act shaping ecological communities can reveal co-existence strategies, providing important information for management and conservation of the species. This study tested these hypotheses using a pair of coexisting species of Herpsilochmus, H. pectoralis and H. sellowi. In this study I use high resolution (50 x 50 m) ecological niche models to Identify which environmental factors best predict species occurrence. Next, I calculate the overlap in habitat use by species and build null models to test the hypothesis of spatial niche segregation. In addition, I obtain the selectivity parameters of habitat use to test whether the species H. pectoralis (larger body size) is less selective than H. sellowi (smaller body size) as stated in the literature for other species. The results reject the ecological equivalence among species, revealing that the species of Herpsilochmus explore the habitat differently, having different environmental niches. The hypothesis of environmental filter was not observed in my analysis, the observed overlap in habitat use among species was lower than expected by chance. Evidence that Herpsilochmus are spatially segregating reinforces the hypothesis of interspecific competition as the predominant force in the selection of microhabitat of the species. However, more data and experiments are necessary to state categorically that the observed pattern is a result of current or past competition

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genus Herpsilochmus is composed mainly of cryptic species, among them is Herpsilochmus rufimarginatus, which is currently represented by four subspecies: H. r. rufimarginatus, H. r. frater, H. r. scapularis and H. r. exiguus. Differences in plumage and vocalization suggest that there are more than one species involved in this complex. Thus this and other subspecific taxa need urgent revision, the disjunct distribution of this species also allows us to infer the relationship between birds that occur in this biome and / or different centers of endemism. This study aims to make a taxonomic revision of the taxa included in the complex time Herpsilochmus rufimarginatus based on morphological, morphometric, vocals and geographical distribution of this bird. Besides creating distribution models current potential and make the reconstruction of the distribution bygone using ecological niche modeling, and testing the niche conservatism and divergence between different subspecies. Consultations for examination of the skins of specimens of the museums: Museum of Zoology, University of São Paulo (MZUSP), National Museum of Rio de Janeiro (MN) and Emilio Goeldi Museum of Pará (MPEG), and the skins deposited at the collection of Ornithological Federal University of Rio Grande do Norte (COUFRN). We studied the following measures length of specimens: exposed culmen, culmen and total culmen nostril, tarsus, wing and tail flattened. The voice analysis was performed with vocalizations banks and / or digital banks people where 17 voice parameters were measured. This information and more available in the literature were used to assemble a bunch of data under the limit distribution of taxa and generate ecological niche models. This analyzes carried out in the program Maxent, having as model selection criterion the AUC, and the models were greater than 0.80 are considered good models. Environmental data for the realization of the modeling were downloaded on the website of Worldclim. The morphometric information, vocals and geographic distribution point for the separation of these taxa to be considering various uni and multivariate analyzes. The potential distribution models performed well (AUC> 0.80), and its distribution associated with environmental characteristics of the Amazon forest and Atlantic forest (forests of south and southeast, northeast and forest). The reconstruction of the distribution indicates a possible contact between the southern part of the Atlantic forest in the northern part of the Amazon. The analysis of niche overlap showed a low overlap between taxa and comparisons between the null model and the generated overlay link probably occurring niche conservatism. The data suggest that the taxa that occur in the Amazon and Atlantic forest represent three distinct species

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The non-native invasive anuran Lithobates catesbeianus is presently distributed in Brazil, especially in the Atlantic Rainforest biodiversity hotspot. Here, we use a maximum entropy ecological niche modeling algorithm (i) to model the North American native geographic distribution of this species and (ii) to project that model onto the whole of Brazil. After applying a threshold value that balances commission and omission errors, the projection results suggested high probabilities of occurrence mostly in southern and southeastern Brazil. We also present the first report on the species known distribution in Brazil, showing good agreement with model predictions. If the predictive map is interpreted as depicting invasiveness potential of L. catesbeianus, strategies to prevent further invasion in Brazil should be focused especially in the Atlantic Rainforest biodiversity hotspot.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The disturbance vicariance hypothesis (DV) has been proposed to explain speciation in Amazonia, especially its edge regions, e. g. in eastern Guiana Shield harlequin frogs (Atelopus) which are suggested to have derived from a cool-adapted Andean ancestor. In concordance with DV predictions we studied that (i) these amphibians display a natural distribution gap in central Amazonia; (ii) east of this gap they constitute a monophyletic lineage which is nested within a pre-Andean/western clade; (iii) climate envelopes of Atelopus west and east of the distribution gap show some macroclimatic divergence due to a regional climate envelope shift; (iv) geographic distributions of climate envelopes of western and eastern Atelopus range into central Amazonia but with limited spatial overlap. We tested if presence and apparent absence data points of Atelopus were homogenously distributed with Ripley's K function. A molecular phylogeny (mitochondrial 16S rRNA gene) was reconstructed using Maximum Likelihood and Bayesian Inference to study if Guianan Atelopus constitute a clade nested within a larger genus phylogeny. We focused on climate envelope divergence and geographic distribution by computing climatic envelope models with MaxEnt based on macroscale bioclimatic parameters and testing them by using Schoener's index and modified Hellinger distance. We corroborated existing DV predictions and, for the first time, formulated new DV predictions aiming on species' climate envelope change. Our results suggest that cool-adapted Andean Atelopus ancestors had dispersed into the Amazon basin and further onto the eastern Guiana Shield where, under warm conditions, they were forced to change climate envelopes. © 2010 The Author(s).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Preserving large tracts of natural habitats is essential to maintain biodiversity. Nevertheless, even large areas may still suffer from less visible impacts such as loss of ecological processes. Because mapping ecological processes over large scales is not practical, an alternative is to map surrogate species that are key for those processes. In this study, we chose four species of Neotropical large mammals (the largest apex predator: jaguar - Panthera onca; the largest herbivore: tapir - Tapirus terrestris; the largest seed predator: white-lipped peccary - Tayassu pecari; and the largest arboreal seed disperser: muriqui - Brachyteles spp.) in an ecosystem with an old history of human impact (the Atlantic Forest) to test whether areas with native forest still harbor ecological processes that may guarantee long-term ecosystem maintenance. We gathered 94 locations with recent presence of the four species to map current ranges and model suitable areas. Our results reveal that 96% of the remaining Atlantic Forest is depleted of at least one of the four surrogate species and 88% is completely depleted of all four surrogate species. We also found that only 16% is still environmentally suitable for all four, and 55% is completely unsuitable to all four of them. Our study highlights the importance of looking beyond land cover to fully depict intactness of natural areas, and suggests that ecosystems with a long history of human impact (such as the Atlantic Forest) may be suffering from ecological impacts not seen at a first glance. © 2013 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insect pest phylogeography might be shaped both by biogeographic events and by human influence. Here, we conducted an approximate Bayesian computation (ABC) analysis to investigate the phylogeography of the New World screwworm fly, Cochliomyia hominivorax, with the aim of understanding its population history and its order and time of divergence. Our ABC analysis supports that populations spread from North to South in the Americas, in at least two different moments. The first split occurred between the North/Central American and South American populations in the end of the Last Glacial Maximum (15,300-19,000 YBP). The second split occurred between the North and South Amazonian populations in the transition between the Pleistocene and the Holocene eras (9,100-11,000 YBP). The species also experienced population expansion. Phylogenetic analysis likewise suggests this north to south colonization and Maxent models suggest an increase in the number of suitable areas in South America from the past to present. We found that the phylogeographic patterns observed in C. hominivorax cannot be explained only by climatic oscillations and can be connected to host population histories. Interestingly we found these patterns are very coincident with general patterns of ancient human movements in the Americas, suggesting that humans might have played a crucial role in shaping the distribution and population structure of this insect pest. This work presents the first hypothesis test regarding the processes that shaped the current phylogeographic structure of C. hominivorax and represents an alternate perspective on investigating the problem of insect pests. © 2013 Fresia et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)