887 resultados para Matter Waves
Resumo:
Radiative shock waves play a pivotal role in the transport energy into the stellar medium. This fact has led to many efforts to scale the astrophysical phenomena to accessible laboratory conditions and their study has been highlighted as an area requiring further experimental investigations. Low density material with high atomic mass is suitable to achieve radiative regime, and, therefore, low density xenon plasmas are commonly used for the medium in which the radiative shocks propagate. The knowledge of the plasma radiative properties is crucial for the correct understanding and for the hydrodynamic simulations of radiative shocks. In this work, we perform an analysis of the radiative properties of xenon plasmas in a range of matter densities and electron temperatures typically found in laboratory experiments of radiative shocks launched in xenon plasmas. Furthermore, for a particular experiment, our analysis is applied to make a diagnostics of the electron temperatures of the radiative shocks since they could not be experimentally measured
Resumo:
In this thesis, we present the generation and studies of a 87Rb Bose-Einstein condensate (BEC) perturbed by an oscillatory excitation. The atoms are trapped in a harmonic magnetic trap where, after an evaporative cooling process, we produce the BEC. In order to study the effect caused by oscillatory excitations, a quadrupole magnetic field time oscillatory is superimposed to the trapping potential. Through this perturbation, collective modes were observed. The dipole mode is excited even for low excitation amplitudes. However, a minimum excitation energy is needed to excite the condensate quadrupole mode. Observing the excited cloud in TOF expansion, we note that for excitation amplitude in which the quadrupole mode is excited, the cloud expands without invert its aspect ratio. By looking these clouds, after long time-of-flight, it was possible to see vortices and, sometimes, a turbulent state in the condensed cloud. We calculated the momentum distribution of the perturbed BECs and a power law behavior, like the law to Kolmogorov turbulence, was observed. Furthermore, we show that using the method that we have developed to calculate the momentum distribution, the distribution curve (including the power law exponent) exhibits a dependence on the quadrupole mode oscillation of the cloud. The randomness distribution of peaks and depletions in density distribution image of an expanded turbulent BEC, remind us to the intensity profile of a speckle light beam. The analogy between matter-wave speckle and light speckle is justified by showing the similarities in the spatial propagation (or time expansion) of the waves. In addition, the second order correlation function is evaluated and the same dependence with distance was observed for the both waves. This creates the possibility to understand the properties of quantum matter in a disordered state. The propagation of a three-dimensional speckle field (as the matter-wave speckle described here) creates an opportunity to investigate the speckle phenomenon existing in dimensions higher than 2D (the case of light speckle).
Resumo:
We investigate the existence and dispersion characteristics of surface waves that propagate at an interface between a metal–dielectric superlattice and an isotropic dielectric. Within the long-wavelength limit, when the effective-medium (EM) approximation is valid, the superlattice behaves like a uniaxial plasmonic crystal with the main optical axes perpendicular to the metal–dielectric interfaces. We demonstrate that if such a semi-infinite plasmonic crystal is cut normally to the layer interfaces and brought into contact with a semi-infinite dielectric, a new type of surface mode can appear. Such modes can propagate obliquely to the optical axes if favorable conditions regarding the thickness of the layers and the dielectric permittivities of the constituent materials are met. We show that losses within the metallic layers can be substantially reduced by making the layers sufficiently thin. At the same time, a dramatic enlargement of the range of angles for oblique propagation of the new surface modes is observed. This can lead, however, to field non-locality and consequently to failure of the EM approximation.
Resumo:
In this paper, we investigate transmission of electromagnetic wave through aperiodic dielectric multilayers. A generic feature shown is that the mirror symmetry in the system can induce the resonant transmission, which originates from the positional correlations (for example, presence of dimers) in the system. Furthermore, the resonant transmission can be manipulated at a specific wavelength by tuning aperiodic structures with internal symmetry. The theoretical results are experimentally proved in the optical observation of aperiodic SiO2/TiO2 multilayers with internal symmetry. We expect that this feature may have potential applications in optoelectric devices such as the wavelength division multiplexing system.
Resumo:
We study a generalized Hubbard model on the two-leg ladder at zero temperature, focusing on a parameter region with staggered flux (SF)/d-density wave (DDW) order. To guide our numerical calculations, we first investigate the location of a SF/DDW phase in the phase diagram of the half-filled weakly interacting ladder using a perturbative renormalization group (RG) and bosonization approach. For hole doping 6 away from half-filling, finite-system density-matrix renormalizationgroup (DMRG) calculations are used to study ladders with up to 200 rungs for intermediate-strength interactions. In the doped SF/DDW phase, the staggered rung current and the rung electron density both show periodic spatial oscillations, with characteristic wavelengths 2/delta and 1/delta, respectively, corresponding to ordering wavevectors 2k(F) and 4k(F) for the currents and densities, where 2k(F) = pi(1 - delta). The density minima are located at the anti-phase domain walls of the staggered current. For sufficiently large dopings, SF/DDW order is suppressed. The rung density modulation also exists in neighboring phases where currents decay exponentially. We show that most of the DMRG results can be qualitatively understood from weak-coupling RG/bosonization arguments. However, while these arguments seem to suggest a crossover from non-decaying correlations to power-law decay at a length scale of order 1/delta, the DMRG results are consistent with a true long-range order scenario for the currents and densities. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The shallow water configuration of the gulf of Trieste allows the propagation of the stress due to wind and waves along the whole water column down to the bottom. When the stress overcomes a particular threshold it produces resuspension processes of the benthic detritus. The benthic sediments in the North Adriatic are rich of organic matter, transported here by many rivers. This biological active particulate, when remaining in the water, can be transported in all the Adriatic basin by the basin-wide circulation. In this work is presented a first implementation of a resuspension/deposition submodel in the oceanographic coupled physical-biogeochemical 1-dimensional numerical model POM-BFM. At first has been considered the only climatological wind stress forcing, next has been introduced, on the surface, an annual cycle of wave motion and finally have been imposed some exceptional wave event in different periods of the year. The results show a strong relationship between the efficiency of the resuspension process and the stratification of the water column. During summer the strong stratification can contained a great quantity of suspended matter near to the bottom, while during winter even a low concentration of particulate can reach the surface and remains into the water for several months without settling and influencing the biogeochemical system. Looking at the biologic effects, the organic particulate, injected in the water column, allow a sudden growth of the pelagic bacteria which competes with the phytoplankton for nutrients strongly inhibiting its growth. This happen especially during summer when the suspended benthic detritus concentration is greater.
Resumo:
168 p.
Resumo:
The cerebellum is an important site for cortical demyelination in multiple sclerosis, but the functional significance of this finding is not fully understood. To evaluate the clinical and cognitive impact of cerebellar grey-matter pathology in multiple sclerosis patients. Forty-two relapsing-remitting multiple sclerosis patients and 30 controls underwent clinical assessment including the Multiple Sclerosis Functional Composite, Expanded Disability Status Scale (EDSS) and cerebellar functional system (FS) score, and cognitive evaluation, including the Paced Auditory Serial Addition Test (PASAT) and the Symbol-Digit Modalities Test (SDMT). Magnetic resonance imaging was performed with a 3T scanner and variables of interest were: brain white-matter and cortical lesion load, cerebellar intracortical and leukocortical lesion volumes, and brain cortical and cerebellar white-matter and grey-matter volumes. After multivariate analysis high burden of cerebellar intracortical lesions was the only predictor for the EDSS (p<0.001), cerebellar FS (p = 0.002), arm function (p = 0.049), and for leg function (p<0.001). Patients with high burden of cerebellar leukocortical lesions had lower PASAT scores (p = 0.013), while patients with greater volumes of cerebellar intracortical lesions had worse SDMT scores (p = 0.015). Cerebellar grey-matter pathology is widely present and contributes to clinical dysfunction in relapsing-remitting multiple sclerosis patients, independently of brain grey-matter damage.
Resumo:
Primary craniocervical dystonia (CCD) is generally attributed to functional abnormalities in the cortico-striato-pallido-thalamocortical loops, but cerebellar pathways have also been implicated in neuroimaging studies. Hence, our purpose was to perform a volumetric evaluation of the infratentorial structures in CCD. We compared 35 DYT1/DYT6 negative patients with CCD and 35 healthy controls. Cerebellar volume was evaluated using manual volumetry (DISPLAY software) and infratentorial volume by voxel based morphometry of gray matter (GM) segments derived from T1 weighted 3 T MRI using the SUIT tool (SPM8/Dartel). We used t-tests to compare infratentorial volumes between groups. Cerebellar volume was (1.14 ± 0.17) × 10(2) cm(3) for controls and (1.13 ± 0.14) × 10(2) cm(3) for patients; p = 0.74. VBM demonstrated GM increase in the left I-IV cerebellar lobules and GM decrease in the left lobules VI and Crus I and in the right lobules VI, Crus I and VIIIb. In a secondary analysis, VBM demonstrated GM increase also in the brainstem, mostly in the pons. While gray matter increase is observed in the anterior lobe of the cerebellum and in the brainstem, the atrophy is concentrated in the posterior lobe of the cerebellum, demonstrating a differential pattern of infratentorial involvement in CCD. This study shows subtle structural abnormalities of the cerebellum and brainstem in primary CCD.
Resumo:
Background and aims: Recent findings have highlighted enhanced fish consumption as a potential measure to increase intake of healthy fatty acids, particularly omega-3. The generalizability of this recommendation, however, may fall short by differences in fish species and cooking techniques. Hence, we investigated how these 2 variables affect the lipid content in fish flesh. Methods and Results: Nine species of freshwater, deep sea or shore fish were grilled, steamed or fried with or without the addition of soybean oil, olive oil or butter. The lipid composition was analysed and a significant difference was observed in cholesterol, saturated fatty acids, polyunsaturated fatty acids, omega-3 fatty acids, and omega-6 fatty acids contents between species (p<0.05). The use of soybean or olive oil was associated with a significant change in flesh concentration of polyunsaturated, omega-3 and omega-6 fatty acids (p<0.05). Conclusion: This study calls attention to the specific lipid content that must be expected from different fish species and cooking techniques.
Resumo:
Growth in the development and production of engineered nanoparticles (ENPs) in recent years has increased the potential for interactions of these nanomaterials with aquatic and terrestrial environments. Carefully designed studies are therefore required in order to understand the fate, transport, stability, and toxicity of nanoparticles. Natural organic matter (NOM), such as the humic substances found in water, sediment, and soil, is one of the substances capable of interacting with ENPs. This review presents the findings of studies of the interaction of ENPs and NOM, and the possible effects on nanoparticle stability and the toxicity of these materials in the environment. In addition, ENPs and NOM are utilized for many different purposes, including the removal of metals and organic compounds from effluents, and the development of new electronic sensors and other devices for the detection of active substances. Discussion is therefore provided of some of the ways in which NOM can be used in the production of nanoparticles. Although there has been an increase in the number of studies in this area, further progress is needed to improve understanding of the dynamic interactions between ENPs and NOM.
Resumo:
Below cloud scavenging processes have been investigated considering a numerical simulation, local atmospheric conditions and particulate matter (PM) concentrations, at different sites in Germany. The below cloud scavenging model has been coupled with bulk particulate matter counter TSI (Trust Portacounter dataset, consisting of the variability prediction of the particulate air concentrations during chosen rain events. The TSI samples and meteorological parameters were obtained during three winter Campaigns: at Deuselbach, March 1994, consisting in three different events; Sylt, April 1994 and; Freiburg, March 1995. The results show a good agreement between modeled and observed air concentrations, emphasizing the quality of the conceptual model used in the below cloud scavenging numerical modeling. The results between modeled and observed data have also presented high square Pearson coefficient correlations over 0.7 and significant, except the Freiburg Campaign event. The differences between numerical simulations and observed dataset are explained by the wind direction changes and, perhaps, the absence of advection mass terms inside the modeling. These results validate previous works based on the same conceptual model.
Resumo:
OBJECTIVE: To analyze the impact on human health of exposure to particulate matter emitted from burnings in the Brazilian Amazon region. METHODS: This was an ecological study using an environmental exposure indicator presented as the percentage of annual hours (AH%) of PM2.5 above 80 μg/m3. The outcome variables were the rates of hospitalization due to respiratory disease among children, the elderly and the intermediate age group, and due to childbirth. Data were obtained from the National Space Research Institute and the Ministry of Health for all of the microregions of the Brazilian Amazon region, for the years 2004 and 2005. Multiple regression models for the outcome variables in relation to the predictive variable AH% of PM2.5 above 80 μg/m3 were analyzed. The Human Development Index (HDI) and mean number of complete blood counts per 100 inhabitants in the Brazilian Amazon region were the control variables in the regression analyses. RESULTS: The association of the exposure indicator (AH%) was higher for the elderly than for other age groups (β = 0.10). For each 1% increase in the exposure indicator there was an increase of 8% in child hospitalization, 10% in hospitalization of the elderly, and 5% for the intermediate age group, even after controlling for HDI and mean number of complete blood counts. No association was found between the AH% and hospitalization due to childbirth. CONCLUSIONS: The indicator of atmospheric pollution showed an association with occurrences of respiratory diseases in the Brazilian Amazon region, especially in the more vulnerable age groups. This indicator may be used to assess the effects of forest burning on human health.
Resumo:
The circulation and transport of suspended particulate matter in the Caravelas Estuary are assessed. Nearly-synoptic hourly hydrographic, current (ADCP velocity and volume transport) and suspended particulate matter data were collected during a full semidiurnal spring tide, on the two transects Boca do Tomba and Barra Velha and on longitudinal sections at low and high tide. On the first transect the peak ebb currents (-1.5 ms-1) were almost twice as strong as those of the wider and shallow Barra Velha inlet (-0.80 ms-1) and the peak flood currents were 0.75 and 0.60 ms-1, respectively. Due to the strong tidal currents both inlets had weak vertical salinity stratification and were classified with the Stratification-circulation Diagram as Type 2a (partially mixed-weakly stratified) and Type 1a (well mixed). Volume transports were very close, ranging from -3,500 to 3,100 m³s-1 at the ebb and flood, respectively, with a residual -630 m³s-1. The concentration of the suspended particulate matter was closely related to the tidal variation and decreased landwards from 50 mg.L-1 at the estuary mouth, to 10 mg.L-1 at distances of 9 and 16 km for the low and high tide experiments, respectively. The total residual SPM transport was out of the estuary at rates of -18 tons per tidal cycle.
Resumo:
Land cover change constitutes one of main way of alteration of soil organic matter in both quantitative and qualitative terms. The goal of this study was to compare the carbon stock and the isotopic signature of the organic matter in the soil of areas with different land use,covered with forest and grass (pasture). The study area is located at Sorocaba, SP, Brazil. Using un-deformed soil samples, we measured the carbon content and bulk density. The isotopic signature of soil carbon was determined through the analysis of isotopic ratio (12)C/(13)C. The pasture soil stocks 48% less carbon than the soil covered by natural forest. The isotopic signature indicated that 42.2% of organic matter of the soil covered by pasture is originated from grasses. This characterizes a highly degradation of organic matter in the environment, both quantitatively and qualitatively. Hence, some guidelines of recuperation are described in order to restore the soil organic matter, structure and porosity.