996 resultados para Matrix Equations


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present thesis is about the inverse problem in differential Galois Theory. Given a differential field, the inverse  problem asks which linear algebraic groups can be realized as differential Galois groups of Picard-Vessiot extensions of this field.   In this thesis we will concentrate on the realization of the classical groups as differential Galois groups. We introduce a method for a very general realization of these groups. This means that we present for the classical groups of Lie rank $l$ explicit linear differential equations where the coefficients are differential polynomials in $l$ differential indeterminates over an algebraically closed field of constants $C$, i.e. our differential ground field is purely differential transcendental over the constants.   For the groups of type $A_l$, $B_l$, $C_l$, $D_l$ and $G_2$ we managed to do these realizations at the same time in terms of Abhyankar's program 'Nice Equations for Nice Groups'. Here the choice of the defining matrix is important. We found out that an educated choice of $l$ negative roots for the parametrization together with the positive simple roots leads to a nice differential equation and at the same time defines a sufficiently general element of the Lie algebra. Unfortunately for the groups of type $F_4$ and $E_6$ the linear differential equations for such elements are of enormous length. Therefore we keep in the case of $F_4$ and $E_6$ the defining matrix differential equation which has also an easy and nice shape.   The basic idea for the realization is the application of an upper and lower bound criterion for the differential Galois group to our parameter equations and to show that both bounds coincide. An upper and lower bound criterion can be found in literature. Here we will only use the upper bound, since for the application of the lower bound criterion an important condition has to be satisfied. If the differential ground field is $C_1$, e.g., $C(z)$ with standard derivation, this condition is automatically satisfied. Since our differential ground field is purely differential transcendental over $C$, we have no information whether this condition holds or not.   The main part of this thesis is the development of an alternative lower bound criterion and its application. We introduce the specialization bound. It states that the differential Galois group of a specialization of the parameter equation is contained in the differential Galois group of the parameter equation. Thus for its application we need a differential equation over $C(z)$ with given differential Galois group. A modification of a result from Mitschi and Singer yields such an equation over $C(z)$ up to differential conjugation, i.e. up to transformation to the required shape. The transformation of their equation to a specialization of our parameter equation is done for each of the above groups in the respective transformation lemma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A numerical algorithm for the biharmonic equation in domains with piecewise smooth boundaries is presented. It is intended for problems describing the Stokes flow in the situations where one has corners or cusps formed by parts of the domain boundary and, due to the nature of the boundary conditions on these parts of the boundary, these regions have a global effect on the shape of the whole domain and hence have to be resolved with sufficient accuracy. The algorithm combines the boundary integral equation method for the main part of the flow domain and the finite-element method which is used to resolve the corner/cusp regions. Two parts of the solution are matched along a numerical ‘internal interface’ or, as a variant, two interfaces, and they are determined simultaneously by inverting a combined matrix in the course of iterations. The algorithm is illustrated by considering the flow configuration of ‘curtain coating’, a flow where a sheet of liquid impinges onto a moving solid substrate, which is particularly sensitive to what happens in the corner region formed, physically, by the free surface and the solid boundary. The ‘moving contact line problem’ is addressed in the framework of an earlier developed interface formation model which treats the dynamic contact angle as part of the solution, as opposed to it being a prescribed function of the contact line speed, as in the so-called ‘slip models’. Keywords: Dynamic contact angle; finite elements; free surface flows; hybrid numerical technique; Stokes equations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we consider hybrid (fast stochastic approximation and deterministic refinement) algorithms for Matrix Inversion (MI) and Solving Systems of Linear Equations (SLAE). Monte Carlo methods are used for the stochastic approximation, since it is known that they are very efficient in finding a quick rough approximation of the element or a row of the inverse matrix or finding a component of the solution vector. We show how the stochastic approximation of the MI can be combined with a deterministic refinement procedure to obtain MI with the required precision and further solve the SLAE using MI. We employ a splitting A = D – C of a given non-singular matrix A, where D is a diagonal dominant matrix and matrix C is a diagonal matrix. In our algorithm for solving SLAE and MI different choices of D can be considered in order to control the norm of matrix T = D –1C, of the resulting SLAE and to minimize the number of the Markov Chains required to reach given precision. Further we run the algorithms on a mini-Grid and investigate their efficiency depending on the granularity. Corresponding experimental results are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many scientific and engineering applications involve inverting large matrices or solving systems of linear algebraic equations. Solving these problems with proven algorithms for direct methods can take very long to compute, as they depend on the size of the matrix. The computational complexity of the stochastic Monte Carlo methods depends only on the number of chains and the length of those chains. The computing power needed by inherently parallel Monte Carlo methods can be satisfied very efficiently by distributed computing technologies such as Grid computing. In this paper we show how a load balanced Monte Carlo method for computing the inverse of a dense matrix can be constructed, show how the method can be implemented on the Grid, and demonstrate how efficiently the method scales on multiple processors. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we introduce a new algorithm, based on the successful work of Fathi and Alexandrov, on hybrid Monte Carlo algorithms for matrix inversion and solving systems of linear algebraic equations. This algorithm consists of two parts, approximate inversion by Monte Carlo and iterative refinement using a deterministic method. Here we present a parallel hybrid Monte Carlo algorithm, which uses Monte Carlo to generate an approximate inverse and that improves the accuracy of the inverse with an iterative refinement. The new algorithm is applied efficiently to sparse non-singular matrices. When we are solving a system of linear algebraic equations, Bx = b, the inverse matrix is used to compute the solution vector x = B(-1)b. We present results that show the efficiency of the parallel hybrid Monte Carlo algorithm in the case of sparse matrices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we study the computational complexity of a class of grid Monte Carlo algorithms for integral equations. The idea of the algorithms consists in an approximation of the integral equation by a system of algebraic equations. Then the Markov chain iterative Monte Carlo is used to solve the system. The assumption here is that the corresponding Neumann series for the iterative matrix does not necessarily converge or converges slowly. We use a special technique to accelerate the convergence. An estimate of the computational complexity of Monte Carlo algorithm using the considered approach is obtained. The estimate of the complexity is compared with the corresponding quantity for the complexity of the grid-free Monte Carlo algorithm. The conditions under which the class of grid Monte Carlo algorithms is more efficient are given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we consider bilinear forms of matrix polynomials and show that these polynomials can be used to construct solutions for the problems of solving systems of linear algebraic equations, matrix inversion and finding extremal eigenvalues. An almost Optimal Monte Carlo (MAO) algorithm for computing bilinear forms of matrix polynomials is presented. Results for the computational costs of a balanced algorithm for computing the bilinear form of a matrix power is presented, i.e., an algorithm for which probability and systematic errors are of the same order, and this is compared with the computational cost for a corresponding deterministic method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper considers two-stage iterative processes for solving the linear system $Af = b$. The outer iteration is defined by $Mf^{k + 1} = Nf^k + b$, where $M$ is a nonsingular matrix such that $M - N = A$. At each stage $f^{k + 1} $ is computed approximately using an inner iteration process to solve $Mv = Nf^k + b$ for $v$. At the $k$th outer iteration, $p_k $ inner iterations are performed. It is shown that this procedure converges if $p_k \geqq P$ for some $P$ provided that the inner iteration is convergent and that the outer process would converge if $f^{k + 1} $ were determined exactly at every step. Convergence is also proved under more specialized conditions, and for the procedure where $p_k = p$ for all $k$, an estimate for $p$ is obtained which optimizes the convergence rate. Examples are given for systems arising from the numerical solution of elliptic partial differential equations and numerical results are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the numerical treatment of second kind integral equations on the real line of the form ∅(s) = ∫_(-∞)^(+∞)▒〖κ(s-t)z(t)ϕ(t)dt,s=R〗 (abbreviated ϕ= ψ+K_z ϕ) in which K ϵ L_1 (R), z ϵ L_∞ (R) and ψ ϵ BC(R), the space of bounded continuous functions on R, are assumed known and ϕ ϵ BC(R) is to be determined. We first derive sharp error estimates for the finite section approximation (reducing the range of integration to [-A, A]) via bounds on (1-K_z )^(-1)as an operator on spaces of weighted continuous functions. Numerical solution by a simple discrete collocation method on a uniform grid on R is then analysed: in the case when z is compactly supported this leads to a coefficient matrix which allows a rapid matrix-vector multiply via the FFT. To utilise this possibility we propose a modified two-grid iteration, a feature of which is that the coarse grid matrix is approximated by a banded matrix, and analyse convergence and computational cost. In cases where z is not compactly supported a combined finite section and two-grid algorithm can be applied and we extend the analysis to this case. As an application we consider acoustic scattering in the half-plane with a Robin or impedance boundary condition which we formulate as a boundary integral equation of the class studied. Our final result is that if z (related to the boundary impedance in the application) takes values in an appropriate compact subset Q of the complex plane, then the difference between ϕ(s)and its finite section approximation computed numerically using the iterative scheme proposed is ≤C_1 [kh log⁡〖(1⁄kh)+(1-Θ)^((-1)⁄2) (kA)^((-1)⁄2) 〗 ] in the interval [-ΘA,ΘA](Θ<1) for kh sufficiently small, where k is the wavenumber and h the grid spacing. Moreover this numerical approximation can be computed in ≤C_2 N log⁡N operations, where N = 2A/h is the number of degrees of freedom. The values of the constants C1 and C2 depend only on the set Q and not on the wavenumber k or the support of z.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we analyze the double Caldeira-Leggett model: the path integral approach to two interacting dissipative harmonic oscillators. Assuming a general form of the interaction between the oscillators, we consider two different situations: (i) when each oscillator is coupled to its own reservoir, and (ii) when both oscillators are coupled to a common reservoir. After deriving and solving the master equation for each case, we analyze the decoherence process of particular entanglements in the positional space of both oscillators. To analyze the decoherence mechanism we have derived a general decay function, for the off-diagonal peaks of the density matrix, which applies both to common and separate reservoirs. We have also identified the expected interaction between the two dissipative oscillators induced by their common reservoir. Such a reservoir-induced interaction, which gives rise to interesting collective damping effects, such as the emergence of relaxation- and decoherence-free subspaces, is shown to be blurred by the high-temperature regime considered in this study. However, we find that different interactions between the dissipative oscillators, described by rotating or counter-rotating terms, result in different decay rates for the interference terms of the density matrix. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We associate to an arbitrary Z-gradation of the Lie algebra of a Lie group a system of Riccati-type first order differential equations. The particular cases under consideration are the ordinary Riccati and the matrix Riccati equations. The multidimensional extension of these equations is given. The generalisation of the associated Redheffer-Reid differential systems appears in a natural way. The connection between the Toda systems and the Riccati-type equations in lower and higher dimensions is established. Within this context the integrability problem for those equations is studied. As an illustration, some examples of the integrable multidimensional Riccati-type equations related to the maximally nonabelian Toda systems are given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Starting from the Generating functional for the Green Function (GF), constructed from the Lagrangian action in the Duffin-Kemmer-Petiau (DKP) theory (L-approach) we strictly prove that the physical matrix elements of the S-matrix in DKP and Klein-Gordon-Fock (KGF) theories coincide in cases of interacting spin O particles with external and quantized Maxwell and Yang-Mills fields and in case of external gravitational field (without or with torsion), For the proof we use the reduction formulas of Lehmann, Symanzik and Zimmermann (LSZ). We prove that many photons and Yang-Mills particles GF coincide in both theories too. (C) 2000 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We derive the soliton matrices corresponding to an arbitrary number of higher-order normal zeros for the matrix Riemann-Hilbert problem of arbitrary matrix dimension, thus giving the complete solution to the problem of higher-order solitons. Our soliton matrices explicitly give all higher-order multisoliton solutions to the nonlinear partial differential equations integrable through the matrix Riemann-Hilbert problem. We have applied these general results to the three-wave interaction system, and derived new classes of higher-order soliton and two-soliton solutions, in complement to those from our previous publication [Stud. Appl. Math. 110, 297 (2003)], where only the elementary higher-order zeros were considered. The higher-order solitons corresponding to nonelementary zeros generically describe the simultaneous breakup of a pumping wave (u(3)) into the other two components (u(1) and u(2)) and merger of u(1) and u(2) waves into the pumping u(3) wave. The two-soliton solutions corresponding to two simple zeros generically describe the breakup of the pumping u(3) wave into the u(1) and u(2) components, and the reverse process. In the nongeneric cases, these two-soliton solutions could describe the elastic interaction of the u(1) and u(2) waves, thus reproducing previous results obtained by Zakharov and Manakov [Zh. Eksp. Teor. Fiz. 69, 1654 (1975)] and Kaup [Stud. Appl. Math. 55, 9 (1976)]. (C) 2003 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)