963 resultados para Mathematics knowledge
Resumo:
Distance learning - where students take courses (attend classes, get activities and other sort of learning materials) while being physically separated from their instructors, for larger part of the course duration - is far from being a “new event”. Since the middle of the nineteenth century, this has been done through Radio, Mail and TV, taking advantage of the full educational potential that these media resources had to offer at the time. However, in recent times we have, at our complete disposal, the “magic wonder” of communication and globalization - the Internet. Taking advantage of a whole new set of educational opportunities, with a more or less unselfish “look” to economic interests, focusing its concern on a larger and collective “welfare”, contributing to the development of a more “equitable” world, with regard to educational opportunities, the Massive Open Online Courses (MOOCs) were born and have become an important feature of the higher education in recent years. Many people have been talking about MOOCs as a potential educational revolution, which has arrived from North America, still growing and spreading, referring to its benefits and/or disadvantages. The Polytechnic Institute of Porto, also known as IPP, is a Higher Education Portuguese institution providing undergraduate and graduate studies, which has a solid history of online education and innovation through the use of technology, and it has been particularly interested and focused on MOOC developments, based on an open educational policy in order to try to implement some differentiated learning strategies to its actual students and as a way to attract future ones. Therefore, in July 2014, IPP launched the first Math MOOC on its own platform. This paper describes the requirements, the resulting design and implementation of a mathematics MOOC, which was essentially addressed to three target populations: - pre-college students or individuals wishing to update their Math skills or that need to prepare for the National Exam of Mathematics; - Higher Education students who have not attended in High School, this subject, and who feel the need to acquire basic knowledge about some of the topics covered; - High School Teachers who may use these resources with their students allowing them to develop teaching methodologies like "Flipped Classroom” (available at http://www.opened.ipp.pt/). The MOOC was developed in partnership with several professors from several schools from IPP, gathering different math competences and backgrounds to create and put to work different activities such video lectures and quizzes. We will also try to briefly discuss the advertising strategy being developed to promote this MOOC, since it is not offered through a main MOOC portal, such as Coursera or Udacity.
Resumo:
The aim of this article is to present the main conclusions of the Report on research in Catalonia for the area of mathematics**. The report was prepared by Joaquim Bruna, Marta Sanz, Joan de Solà-Morales and the author of this text, and published by the Institute for Catalan Studies in 1998. In the report, scientific activity in the area of mathematics was measured essentially by examining two parameters: papers published in specialised journals and doctoral theses read. It should be recognised that a considerable amount of activity in the field of mathematics consists of applying existing knowledge to the resolution of practical technological problems that arise in particular companies. This kind of scientific activity was not measured in any way in the report due to the difficulty of obtaining objective data. This article is divided into the following sections: human resources, scientific production, funding, research publications, research centres, and conclusions.
Resumo:
Improvement of mathematical education and motivation of students in the mathematics" area is needed. What can be done? We introduce some ideas to generate the student"s interest for mathematics, because they often present difficulties in appreciating the relevance of mathematics and its role in the health sciences. We consider that a cornerstone in the strategy to attract the students" interest is linking the mathematics with real biomedical situations. We proceed in the following manner: We first present a real biomedical situation to produce interest and to generate curiosity. Second, we ask thought-provoking questions to students as: Which is the biomedical problem presented? Which is my knowledge on this situation? What could I do to solve this biomedical situation? Do I need some new mathematical concepts and procedures? Thereupon, the teacher explains the mathematical concepts necessary to solve the case presented, providing definitions, properties and tools for graphical display and/or mathematical calculations. In this learning methodology, ICTs were cornerstones for reaching the proposed competences. Furthermore, ICTs can also be used in the evaluative task in its two possible aspects: formative and for obtaining a qualification. Comments from students about this new mathematics teaching method indicate that the use of real biomedical case studies kept the lessons in mathematics interesting.
Resumo:
This piece of research compares knowledge of Catalan, Castilian and mathematics, as well as the attitudes to these two languages, of a sample of non-Catalan speaking pupils of low sociocultural level in their fourth year of primary school. Some of the pupils had followed an immersion programme in Catalan, whereas others had approached Catalan through their habitual language (Castilian). The findings show that not only did the immersion pupils obtain significantly better results in L2 (Catalan), but their mother tongue (Castilian) competence was undiminished and their performance on the mathematics test was superior to that of the other group. Moreover, the findings indicate that in pupils starting out from less favourable conditions (a low sociocultural level and a low I.Q.) the effect of the educational approach variable is greater than in other cases
Resumo:
This study addresses the question of teacher educators’ conceptions of mathematics teacher education (MTE) in teacher colleges in Tanzania, and their thoughts on how to further develop it. The tension between exponents of content as opposed to pedagogy has continued to cause challenging conceptual differences, which also influences what teacher educators conceive as desirable in the development of this domain. This tension is connected to the dissatisfaction of parents and teachers with the failure of school mathematics. From this point of view, the overall aim was to identify and describe teacher educators’ various conceptions of MTE. Inspired by the debate among teacher educators about what the balance should be between subject matter and pedagogical knowledge, it was important to look at the theoretical faces of MTE. The theoretical background involved the review of what is visible in MTE, what is yet to be known and the challenges within the practice. This task revealed meanings, perspectives in MTE, professional development and assessment. To do this, two questions were asked, to which no clear solutions satisfactorily existed. The questions to guide the investigation were, firstly, what are teacher educators’ conceptions of MTE, and secondly, what are teacher educators’ thoughts on the development of MTE? The two questions led to the choice of phenomenography as the methodological approach. Against the guiding questions, 27 mathematics teacher educators were interviewed in relation to the first question, while 32 responded to an open-ended questionnaire regarding question two. The interview statements as well as the questionnaire responses were coded and analysed (classified). The process of classification generated patterns of qualitatively different ways of seeing MTE. The results indicate that MTE is conceived as a process of learning through investigation, fostering inspiration, an approach to learning with an emphasis on problem solving, and a focus on pedagogical knowledge and skills in the process of teaching and learning. In addition, the teaching and learning of mathematics is seen as subject didactics with a focus on subject matter and as an organized integration of subject matter, pedagogical knowledge and some school practice; and also as academic content knowledge in which assessment is inherent. The respondents also saw the need to build learner-educator relationships. Finally, they emphasized taking advantage of teacher educators’ neighbourhood learning groups, networking and collaboration as sustainable knowledge and skills sharing strategies in professional development. Regarding desirable development, teacher educators’ thoughts emphasised enhancing pedagogical knowledge and subject matter, and to be determined by them as opposed to conventional top-down seminars and workshops. This study has revealed various conceptions and thoughts about MTE based on teacher educators´ diverse history of professional development in mathematics. It has been reasonably substantiated that some teacher educators teach school mathematics in the name of MTE, hardly distinguishing between the role and purpose of the two in developing a mathematics teacher. What teacher educators conceive as MTE and what they do regarding the education of teachers of mathematics revealed variations in terms of seeing the phenomenon of interest. Within limits, desirable thoughts shed light on solutions to phobias, and in the same way low self-esteem and stigmatization call for the building of teacher educator-student teacher relationships.
Resumo:
This thesis develops a method for identifying students struggling in their mathematical studies at an early stage. It helps in directing support to students needing and benefiting from it the most. Thus, frustration felt by weaker students may decrease and therefore, hopefully, also drop outs of potential engineering students. The research concentrates on a combination of personality and intelligence aspects. Personality aspects gave information on conation and motivation for learning. This part was studied from the perspective of motivation and self-regulation. Intelligence aspects gave information on declarative and procedural knowledge: what had been taught and what was actually mastered. Students answered surveys on motivation and self-regulation in 2010 and 2011. Based on their answers, background information, results in the proficiency test, and grades in the first mathematics course, profiles describing the students were formed. In the following years, the profiles were updated with new information obtained each year. The profiles used to identify struggling students combine personality (motivation, selfregulation, and self-efficacy) and intelligence (declarative and procedural knowledge) aspects at the beginning of their studies. Identifying students in need of extra support is a good start, but methods for providing support must be found. This thesis also studies how this support could be taken into account in course arrangements. The methods used include, for example, languaging and scaffolding, and continuous feedback. The analysis revealed that allocating resources based on the predicted progress does not increase costs or lower the results of better students. Instead, it will help weaker students obtain passing grades.
Resumo:
The purpose of this study was to determine the extent to which gender differences exist in student attitudes toward mathematics and in their performance in mathematics at the Grade Seven and Eight level. The study also questioned how parents influence the attitudes of this grade level of male and female students toward mathematics. Historically, the literature has demonstrated gender differences in the attitudes of students toward mathematics, and in parental support for classroom performance in mathematics. This study was an attempt to examine these differences at one senior public school in the Peel Board of Education. One hundred three Grade Seven and Eight students at a middle school in the Peel Board of Education volunteered to take part in a survey that examined their attitudes toward mathematics, their perceptions of their parents' attitudes toward mathematics and support for good performance in the mathematics classroom, parental expectations for education and future career choices. Gender differences related to performance levels in the mathematics classroom were examined using Pearson contingency analyses. Items from the survey that showed significant differences involved confidence in mathematics and confidence in writing mathematics tests, as well as a belief in the ability to work on mathematics problems. Male students in both the high and low performance groups demonstrated higher levels of confidence than the females in those groups. Female students, however, indicated interest in careers that would require training and knowledge of higher mathematics. Some of the reasons given to explain the gender differences in confidence levels included socialization pressures on females, peer acceptance, and attribution of success. Perceived parental support showed no significant differences across gender groups or performance levels. Possible explanations dealt with the family structure of the participants in the study. Studies that, in the past, have demonstrated gender differences in confidence levels were supported by this study, and discussed in detail. Studies that reported on differences in parental support for student performance, based on the gender of the parent, were not confirmed by this study, and reasons for this were also discussed. The implications for the classroom include: 1) build on the female students' strengths that will allow them to enjoy their experiences in mathematics; 2) stop using the boys as a comparison group; and 3) make students more aware of the need to continue studying mathematics to ensure a wider choice of future careers.
Resumo:
La idea básica de detección de defectos basada en vibraciones en Monitorización de la Salud Estructural (SHM), es que el defecto altera las propiedades de rigidez, masa o disipación de energía de un sistema, el cual, altera la respuesta dinámica del mismo. Dentro del contexto de reconocimiento de patrones, esta tesis presenta una metodología híbrida de razonamiento para evaluar los defectos en las estructuras, combinando el uso de un modelo de la estructura y/o experimentos previos con el esquema de razonamiento basado en el conocimiento para evaluar si el defecto está presente, su gravedad y su localización. La metodología involucra algunos elementos relacionados con análisis de vibraciones, matemáticas (wavelets, control de procesos estadístico), análisis y procesamiento de señales y/o patrones (razonamiento basado en casos, redes auto-organizativas), estructuras inteligentes y detección de defectos. Las técnicas son validadas numérica y experimentalmente considerando corrosión, pérdida de masa, acumulación de masa e impactos. Las estructuras usadas durante este trabajo son: una estructura tipo cercha voladiza, una viga de aluminio, dos secciones de tubería y una parte del ala de un avión comercial.
Resumo:
One of the main tasks of the mathematical knowledge management community must surely be to enhance access to mathematics on digital systems. In this paper we present a spectrum of approaches to solving the various problems inherent in this task, arguing that a variety of approaches is both necessary and useful. The main ideas presented are about the differences between digitised mathematics, digitally represented mathematics and formalised mathematics. Each has its part to play in managing mathematical information in a connected world. Digitised material is that which is embodied in a computer file, accessible and displayable locally or globally. Represented material is digital material in which there is some structure (usually syntactic in nature) which maps to the mathematics contained in the digitised information. Formalised material is that in which both the syntax and semantics of the represented material, is automatically accessible. Given the range of mathematical information to which access is desired, and the limited resources available for managing that information, we must ensure that these resources are applied to digitise, form representations of or formalise, existing and new mathematical information in such a way as to extract the most benefit from the least expenditure of resources. We also analyse some of the various social and legal issues which surround the practical tasks.
Resumo:
This article presents findings of a larger single-country comparative study which set out to better understand primary school teachers’ mathematics education-related beliefs in Thailand. By combining the interview and observation data collected in the initial stage of this study with data gathered from the relevant literature, the 8-belief / 22-item ‘Thai Teachers’ Mathematics Education-related Beliefs’ (TTMEB) Scale was developed. The results of the Mann-Whitney U Test showed that Thai teachers in the two examined socio-economic regions espouse statistically different beliefs concerning the source and stability of mathematical knowledge, as well as classroom authority. Further, these three beliefs are found to be significantly and positively correlated.
Resumo:
The Swedish government has authorised the teaching of mathematics in English to Swedish speaking students. Much of that teaching is performed by foreign trained native English speaking teachers lacking training in second language learners. This systematic review summarises international studies from the last ten years that deal with the teaching of mathematics to second language learners. The review shows that second language students working in a bilingual environment achieve higher rates of content and language knowledge than learners in a monolingual environment. This study also summarises some of the teacher practices that are effective for teaching mathematics in English to second language learners.
Resumo:
This chapter presents a collaborative experience between two neighbouring countries from South America: Argentina and Brazil. Our purpose is to share a model of international collaboration that we consider to be an alternative to the classical movement of early mathematical and scientific knowledge between East and West and between North and South. We start our chapter with a general discussion about the phenomenon of globalization considering some local examples. We characterize our collaboration exploring the tensions and difficulties we faced along our own professional development at the local as well as the international level. We describe the development of our prior collaborative work that established the foundation for our international collaboration portraying the local mathematics education communities. We refer to some balances that were created among our relationships, the expansion of our collaborative network, and how this particular collaboration allows us to contribute to the regional field and inform the international one. We discuss the way that the search for balance and symmetry, or at least a complementary asymmetry in our collaborative relationships, has led us to generate a genuine and equitable collaboration.
Resumo:
Research on the influence of multiple representations in mathematics education gained new momentum when personal computers and software started to become available in the mid-1980s. It became much easier for students who were not fond of algebraic representations to work with concepts such as function using graphs or tables. Research on how students use such software showed that they shaped the tools to their own needs, resulting in an intershaping relationship in which tools shape the way students know at the same time the students shape the tools and influence the design of the next generation of tools. This kind of research led to the theoretical perspective presented in this paper: knowledge is constructed by collectives of humans-with-media. In this paper, I will discuss how media have shaped the notions of problem and knowledge, and a parallel will be developed between the way that software has brought new possibilities to mathematics education and the changes that the Internet may bring to mathematics education. This paper is, therefore, a discussion about the future of mathematics education. Potential scenarios for the future of mathematics education, if the Internet becomes accepted in the classroom, will be discussed. © FIZ Karlsruhe 2009.