953 resultados para Material process


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tropical countries, such as Brazil and Colombia, have the possibility of using agricultural lands for growing biomass to produce bio-fuels such as biodiesel and ethanol. This study applies an energy analysis to the production process of anhydrous ethanol obtained from the hydrolysis of starch and cellulosic and hemicellulosic material present in the banana fruit and its residual biomass. Four different production routes were analyzed: acid hydrolysis of amylaceous material (banana pulp and banana fruit) and enzymatic hydrolysis of lignocellulosic material (flower stalk and banana skin). The analysis considered banana plant cultivation, feedstock transport, hydrolysis, fermentation, distillation, dehydration, residue treatment and utility plant. The best indexes were obtained for amylaceous material for which mass performance varied from 346.5 L/t to 388.7 L/t, Net Energy Value (NEV) ranged from 9.86 MJ/L to 9.94 MJ/L and the energy ratio was 1.9 MJ/MJ. For lignocellulosic materials, the figures were less favorable: mass performance varied from 86.1 to 123.5 L/t, NEV from 5.24 10 8.79 MJ/L and energy ratio from 1.3 to 1.6 MJ/MJ. The analysis showed, however, that both processes can be considered energetically feasible. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An alternative for ethanol production, is the use of vegetable waste, such as excess of banana production, that are evaluated in 2,400,000 t/year, which includes: residual banana fruit and lignocellulosic material. This paper analyzes the energetic and exergetic behavior to carry the process developed at laboratory scale to a plant processing of banana for the ethanol production, involving: growing and transport of the vegetable material, hydrolysis of banana fruit, sugar fermentation, ethanol distillation and utility plant. Finally, energy and exergy indicators are obtained. The results show a positive energy balance when banana fruit is used for ethanol production, but some process modification must be done looking for improving the exergetic efficiency in ethanol production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Piezoactuators consist of compliant mechanisms actuated by two or more piezoceramic devices. During the assembling process, such flexible structures are usually bonded to the piezoceramics. The thin bonding layer(s) between the compliant mechanism and the piezoceramic may induce undesirable behavior, including unusual interfacial nonlinearities. This constitutes a drawback of piezoelectric actuators and, in some applications, such as those associated to vibration control and structural health monitoring (e. g., aircraft industry), their use may become either unfeasible or at least limited. A possible solution to this standing problem can be achieved through the functionally graded material concept and consists of developing `integral piezoactuators`, that is those with no bonding layer(s) and whose performance can be improved by tailoring their structural topology and material gradation. Thus, a topology optimization formulation is developed, which allows simultaneous distribution of void and functionally graded piezoelectric materials (including both piezo and non-piezoelectric materials) in the design domain in order to achieve certain specified actuation movements. Two concurrent design problems are considered, that is the optimum design of the piezoceramic property gradation, and the design of the functionally graded structural topology. Two-dimensional piezoactuator designs are investigated because the applications of interest consist of planar devices. Moreover, material gradation is considered in only one direction in order to account for manufacturability issues. To broaden the range of such devices in the field of smart structures, the design of integral Moonie-type functionally graded piezoactuators is provided according to specified performance requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tungsten carbide has a wide range of applications, mainly cemented carbides made of WC and Co, as wear resistant materials. However, the high cost of WC-Co powders encourages the use of a substrate to manufacture a functionally graded material (FGM) tool made of WC-Co and a tool steel. These materials join the high wear resistance of the cemented carbide and the toughness of the steel. This work deals with the study interaction of the WC-Co and H13 steel to design a functionally graded material by means of spark plasma sintering (SPS). The SPS, a novel sintering technique reaching the consolidation of the powders at relatively low temperatures and short dwell times, is a promising technique in processing materials. In this study, WC, H13 steel, WC-Co, WC-H13 steel and WC-Co-H13 steel bulk samples were investigated using scanning electron microscopy and X-ray diffraction techniques to evaluate the phase transformations involved during SPS consolidation process. The W(2)C and W(3)Fe(3)C precipitation were identified after the SPS consolidation of the WC and WC-H13 steel samples, respectively. The precipitation Of W(4)Co(2)C was also identified in the WC-Co and WC-Co-H13 steel samples. The WC-H 13 steel and WC-Co-H13 steel were also evaluated after heat treatments at 1100 degrees C for 9 h, which enhanced the chemical interaction and the precipitation of W(3)Fe(3)C and W(4)Co(2)C, respectively. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coatings based on NiCrAlC intermetallic based alloy were applied on AISI 316L stainless steel substrates using a high velocity oxygen fuel torch. The influence of the spray parameters on friction and abrasive wear resistance were investigated using an instrumented rubber wheel abrasion test, able to measure the friction forces. The corrosion behaviour of the coatings were studied with electrochemical techniques and compared with the corrosion resistance of the substrate material. Specimens prepared using lower O(2)/C(3)H(8) ratios showed smaller porosity values. The abrasion wear rate of the NiCrAlC coatings was much smaller than that described in the literature for bulk as cast materials with similar composition and one order of magnitude higher than bulk cast and heat treated (aged) NiCrAlC alloy. All coatings showed higher corrosion resistance than the AISI 316L substrate in HCl (5%) aqueous solution at 40 degrees C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adsorbent materials and composites are quite useful for sensor development. Therefore, the aim of this work is the surface modification of particulates and/or composite formation. The material was produced by plasma polymerization of HMDS (hexamethyldisilazane) in a single step. SEM analysis shows good surface coverage of particulates with a plasma polymerized film formed by several clusters that might increase adsorption. Particles (starch. 5 5 mu m) recovered with HMDS films show good properties for retention of medium-size Organic molecules, such as dye. Thin films formed by a mixture of particles and plasma polymerized thin film HMDS species were obtained in a single step and can be used for retention of organic compounds, in liquid or gaseous phase. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bovine bone ash is the main raw material for fabrication of bone china, a special kind of porcelain that has visual and mechanical advantages when compared to usual porcelains. The properties of bone china are highly dependent on the characteristics of the bone ash. However, despite a relatively common product, the science behind formulations and accepted fabrication procedures for bone china is not completely understood and deserves attention for future processing optimizations. In this paper, the influence of the preparation steps (firing, milling, and washing of the bones) on the physicochemical properties of bone ash particles was investigated. Bone powders heat-treated at temperatures varying from 700 to 1000 degrees C were washed and milled. The obtained materials were analyzed in terms of particle size distribution, chemical composition, density, specific surface area, FTIR spectroscopy, dynamic electrophoretic mobility, crystalline phases and scanning electron microscopy. The results indicated that bone ash does not significantly change in terms of chemistry and physical features at calcination temperatures above 700 degrees C. After washing in special conditions, one could only observe hydroxyapatite in the diffraction pattern. By FTIR it was observed that carbonate seems to be mainly concentrated on the surface of the powders. Since this compound can influence in the dispersion stability, and consequently in the quality of the final bone china product, and considering optimal washing parameters based on the dynamic electrophoretic mobility results, we describe a procedure for surface cleaning. (c) 2009 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rupture of a light cellophane diaphragm in an expansion tube has been studied by an optical method. The influence of the light diaphragm on test flow generation has long been recognised, however the diaphragm rupture mechanism is less well known. It has been previously postulated that the diaphragm ruptures around its periphery due to the dynamic pressure loading of the shock wave, with the diaphragm material at some stage being removed from the flow to allow the shock to accelerate to the measured speeds downstream. The images obtained in this series of experiments are the first to show the mechanism of diaphragm rupture and mass removal in an expansion tube. A light diaphragm was impulsively loaded via a shock wave and a series of images was recorded holographically throughout the rupture process, showing gradual destruction of the diaphragm. Features such as the diaphragm material, the interface between gases, and a reflected shock were clearly visualised. Both qualitative and quantitative aspects of the rupture dynamics were derived from the images and compared with existing one-dimensional theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In situ and ex situ studies concerning the new hybrid material vanadium pentoxide xerogel in the presence of the cationic surfactant cetyl pyridinium chloride (V(2)O(5)/CPC) are presented. The in situ characterization studies revealed the presence of a lamellar structure for the V(2)O(5)/CPC hybrid material. The intercalation reaction was evidenced on the basis of the increase in the d-spacing as well as the displacement of the infrared bands toward lower energy levels. Electrochemical studies comprising the cyclic voltammetry and the electrochemical impedance spectroscopy techniques showed that the behavior of the hybrid material is considerably influenced by the electrolyte composition. The ion insertion/de-insertion into the V(2)O(5) xerogel structure accompanying the charge transfer process is influenced by the solid-state diffusion process modeled by using the finite-space Warburg element.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rock bolt stress corrosion cracking (SCC) has been investigated using the linearly increasing stress test (LIST). One series of experiments determined the threshold stress of various bolt metallurgies (900 MPa for 1355AXRC, and 800 MPa for MAC and MA840B steels). The high values of threshold stress suggest that SCC begins in rock bolts when they are sheared by moving rock strata. SCC only occurred for environmental conditions which produce hydrogen on the sample surface, leading to hydrogen embrittlement and SCC. Different threshold potentials were determined for a range of metallurgies. Cold work was shown to increase the resistance of the steel to SCC. Rock bolt rib geometry does not have a direct impact on the SCC resistance properties of the bolt, although the process by which the ribs are produced can introduce tensile stresses into the bolt which lower its resistance to SCC. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work reports the first ultrastructural investigation into the degradation process that starch granules isolated from bananas (cv. Nanicao) undergo during ripening. Starch granules from green bananas had a smooth surface, while granules from ripe bananas were more elongated with parallel striations, as revealed by CSLM and SEM. AFM images revealed that the first layer covering the granule surface is composed of a hard material and, as degradation proceeds, hard and soft regions seem to be repeated at regular intervals. WAXD patterns of banana starches were C-type, and the crystalline index was reduced during ripening. The B-/A-type ratio was increased, indicating the preferential degradation of the A-type allomorph. The branch-chain length distribution showed predominantly short chains of amylopectin (A and B1-chain). The fa/fb ratio was reduced during degradation, while amylose content was increased. The results allowed a detailed understanding of the changes that starch granules undergo during banana ripening. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: This study evaluated the healing of mandibular condylar fracture in rats submitted to experimental and protein undernutrition (8% of protein) by means of histological analysis. Material: Forty-five adult Wistar rats were divided into three groups of 15 animals: a fracture group, who were submitted to condylar fracture with no changes in diet; an undernourished fracture group, who were submitted to a low protein diet and condylar fracture: an undernourished group, kept until the end of experiment, without condylar fracture. Displaced fractures of the right condyle were created under general anaesthesia. The histological study comprised fracture site and temporomandibular joint evaluations. Results: The undernourished fracture group showed significant weight loss. There was a marked decrease in the values of serum proteins and albumin in the undernourished fracture group. Histological analysis showed that protein undernutrition lead to atrophy of the condylar fibrocartilage. Fractures in undernutrition presented a delay in callus formation due to more extensive devitalized bone areas, and after 3 months there were still bone formation areas, while fibrous ankylosis occurred in the articular space. Conclusion: It was concluded that mandibular condyle fractures in rats with protein undernutrition had impaired callus formation, as well as fibrous ankylosis into the temporomandibular joint. (C) 2010 European Association for Cranio-Maxillo-Facial Surgery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O presente trabalho, realizado no âmbito da Tese de Mestrado, tem como principal objectivo estudar as características pozolânicas dos materiais da zona de Arganil para substituição parcial do cimento Portland com o objectivo de intensificar certas qualidades devido à diminuição da porosidade do betão. Estas qualidades são interessantes quando se procura maior durabilidade. Para tal, foram realizados diversos ensaios para a caracterização física, química e mineralógica dos produtos. Os metacaulinos utilizados foram obtidos de amostras de argila submetidas a calcinação (750oC, durante uma hora), processo que permitiu a desidroxilação quase total da matéria-prima, transformando esta numa fase amorfa e irreversível, com propriedades pozolânicas. São apresentados os resultados dos ensaios de caracterização da matéria-prima, das condições de calcinação e do produto resultante da desidroxilação, nomeadamente a determinação da pozolanicidade e superfície específica e das características fundamentais para a aplicabilidade do produto. Descreve ainda o emprego do metacaulino em betões de resistência convencional. Estudou-se a influência do emprego do metacaulino (15% de substituição de cimento, em massa) na resistência à flexão e à compressão (aos 28 dias) em argamassas e o emprego de metacaulino (10%, 15% e 20% de substituição de cimento, em massa) na resistência à compressão (3, 7 e 28 dias) no betão.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Os desafios à engenharia moderna são cada vez maiores, pretendendo-se quase sempre obter estruturas mais leves, com propriedades mecânicas atrativas e muitas vezes com geometrias complexas. Com tais requisitos, um dos materiais que tem vindo a ter uma crescente aplicação é o material compósito. Contudo, no que toca ao cálculo estrutural destes materiais, tudo se torna mais complexo, já que são materiais que geralmente são formados por empilhamento de várias camadas de material heterogéneo, podendo estas encontrarem-se dispostas segundo diferentes orientações. Assim, a utilização de um software que permita a previsão das propriedades mecânicas de uma estrutura em material compósito através da micromecânica, a aplicação da Teoria Clássica dos Laminados e de um critério de rotura, como por exemplo o de Tsai-Hill, é fundamental para agilizar o processo de estudo da estrutura a fabricar. Para dar uma resposta a tal necessidade foi desenvolvida uma aplicação, em MATLAB® GUI, denominada CAFE – Composite Analysis For Engineers, com ambiente gráfico apelativo, que permite determinar todas as variáveis importantes no estudo de estruturas em material compósito. Esta aplicação visa suportar e agilizar a aprendizagem desta área do conhecimento, permitindo também o acesso ao código de cálculo por parte do utilizador, de modo a conhecerem-se as equações utilizadas e, eventualmente, ser alvo de futuros desenvolvimentos. O programa desenvolvido foi alvo de validação, recorrendo-se para tal, a uma comparação dos resultados obtidos entre o respetivo programa e por um outro programa de grande fiabilidade. Assim sendo, concluiu-se que o software CAFE apresenta resultados válidos, encontrando-se apto a ser utilizado.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the effect of incorporation of recycled glass fibre reinforced plastics (GFRP) waste materials, obtained by means of shredding and milling processes, on mechanical behaviour of polyester polymer mortars (PM) was assessed. For this purpose, different contents of GFRP recyclates, between 4% up to 12% in weight, were incorporated into polyester PM materials as sand aggregates and filler replacements. The effect of the addition of a silane coupling agent to resin binder was also evaluated. Applied waste material was proceeding from the shredding of the leftovers resultant from the cutting and assembly processes of GFRP pultrusion profiles. Currently, these leftovers as well as non-conform products and scrap resulting from pultrusion manufacturing process are landfilled, with additional costs to producers and suppliers. Hence, besides the evident environmental benefits, a viable and feasible solution for these wastes would also conduct to significant economic advantages. Design of experiments and data treatment were accomplish by means of full factorial design approach and analysis of variance ANOVA. Experimental results were promising toward the recyclability of GFRP waste materials as partial replacement of aggregates and reinforcement for PM materials, with significant improvements on mechanical properties of resultant mortars with regards to waste-free formulations.