1000 resultados para Matemática - Fundamentos
Resumo:
Pós-graduação em Educação Matemática - IGCE
Resumo:
Pós-graduação em Educação Matemática - IGCE
Resumo:
Pós-graduação em Educação Matemática - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Los ingenieros durante su preparación y después en su vida profesional utilizan los métodos de la matemática clásica. El estilo usual de exposición de la matemática está influenciado por la elaboración de los fundamentos lógicos de esta ciencia, lo que en ocasiones dificulta la comprensión de conceptos y procesos de gran utilidad para el ingeniero. Por ello, en muchas ocasiones los profesores de las asignaturas de la especialidad llevan a sus alumnos sus propias ideas de cómo usar el aparato matemático y cuales son los procedimientos más sencillos por cuyo intermedio se pueden dominar los métodos que necesita el ingeniero. Entonces se tienen varias interrogantes a responder, entre ellas: ¿Cuales son los objetivos de la matemática en ingeniería? ¿Cuales son las habilidades sobre las cuales se debe trabajar? En este grupo de discusión se profundizará en las interrogantes anteriores, y en general en los elementos que intervienen en el diseño de una asignatura de Matemática para ingeniería, así como en aquellos que deben atenderse durante el desarrollo del proceso docente y que inciden favorablemente en la actitud de los estudiantes de ingeniería hacia el estudio de las asignaturas de matemática y en su formación profesional.
Resumo:
En las preparatorias de la U.A.N.L., a diferencia de las preparatorias del resto de las universidades mexicanas, desde el año 1993 se modificaron los cursos de matemática utilizándose un sistema modular en el cual la disciplina Matemática se imparte en cuatro módulos de 9 semanas cada uno separados por 9 semanas en las cuales no se enseña Matemática. La enseñanza fragmentada de esta disciplina provoca discontinuidad y falta de sistematicidad y vinculación entre los temas y poca asimilación de los contenidos que se traduce en olvido de muchos aspectos importantes por parte de los estudiantes. Es nuestro propósito diseñar un programa para la disciplina Matemática, con el que se logre una enseñanza didáctica y metodológica adecuada, basado en los fundamentos del enfoque histórico cultural y la teoría de la actividad.
Resumo:
By the year 2005 the world biochemical market will reach an estimated $ 100 billion and separation processes are a vital link between lab discoveries and the fulfillment of this commercialization potential. The practical application of aqueous two-phase systems (ATPS) to extraction processes has been exploited for several years for the recovery of biological products. Unfortunately, this has not resulted in an extensive presence of the technique in commercial processes. In this paper a critical overview of the fundamental thermodynamic properties related to formation of aqueous two-phase systems and their application to extraction and purification of bioparticules is presented.
Resumo:
This work approaches the forced air cooling of strawberry by numerical simulation. The mathematical model that was used describes the process of heat transfer, based on the Fourier's law, in spherical coordinates and simplified to describe the one-dimensional process. For the resolution of the equation expressed for the mathematical model, an algorithm was developed based on the explicit scheme of the numerical method of the finite differences and implemented in the scientific computation program MATLAB 6.1. The validation of the mathematical model was made by the comparison between theoretical and experimental data, where strawberries had been cooled with forced air. The results showed to be possible the determination of the convective heat transfer coefficient by fitting the numerical and experimental data. The methodology of the numerical simulations was showed like a promising tool in the support of the decision to use or to develop equipment in the area of cooling process with forced air of spherical fruits.
Resumo:
A base-cutter represented for a mechanism of four bars, was developed using the Autocad program. The normal force of reaction of the profile in the contact point was determined through the dynamic analysis. The equations of dynamic balance were based on the laws of Newton-Euler. The linkage was subject to an optimization technique that considered the peak value of soil reaction force as the objective function to be minimized while the link lengths and the spring constant varied through a specified range. The Algorithm of Sequential Quadratic Programming-SQP was implemented of the program computational Matlab. Results were very encouraging; the maximum value of the normal reaction force was reduced from 4,250.33 to 237.13 N, making the floating process much less disturbing to the soil and the sugarcane rate. Later, others variables had been incorporated the mechanism optimized and new otimization process was implemented .
Resumo:
One of the effects of the globalized world is a strong tendency to eliminate differences, promoting a planetary culture. Education systems are particularly affected, undergoing strong pressure from international studies and evaluations, inevitably comparative, and sadly competitive. As a result, one observes the gradual elimination of cultural components in the definition of education systems. The constitution of new social imaginaries becomes clear; imaginaries empty of historical, geographical and temporal referents, characterized by a strong presence of the culture of the image. The criteria of classification establish an inappropriate reference that has as its consequence the definition of practices and even of education systems. On the other hand, resistance mechanisms, often unconscious, are activated seeking to safeguard and recover the identifying features of a culture, such as its traditions, cuisine, languages, artistic manifestations in general, and, in doing so, to contribute to cultural diversity, an essential factor to encourage creativity. In this article, the sociocultural basis of mathematics and of its teaching are examined, and also the consequences of globalization and its effects on multicultural education. The concept of culture is discussed, as well as issues related to culture dynamics, resulting in the proposition of a theory of transdisciplinar and transcultural knowledge. Upon such basis the Ethnomathematics Program is presented. A critique is also made of the curriculum presently used, which is in its conception and detailing, obsolete, uninteresting and of little use. A different concept of curriculum is proposed, based on the communicative (literacy), analytical (matheracy), and material (technoracy) instruments.
Resumo:
We present and discuss in this article some features of a research program whose central object of investigation is the way in which the recent fields of history, philosophy, and sociology of mathematical education could take part in a critical and qualified manner in the initial and continuing training of teachers in this area. For that, we endorse the viewpoint that the courses for mathematics teacher education should be based on a conception of specificity through which a new pedagogical project could be established. In such project those new fields of investigation would participate, in an organic and clarifying way, in the constitution of multidimensional problematizations of school practices, in which mathematics would be involved, and that would be guided by academic investigations about the issues that currently challenge teachers in the critical work of incorporation, resignification, production, and transmission of mathematical culture in the context of the school institution.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas. Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Este artigo traz uma reflexão acerca da avaliação em Matemática, destacando os modos pelos quais essa avaliação pode vir a ser compreendida e discutida em um curso de formação de professores da área. Explicita-se como, a partir das situações de sala de aula, o olhar para as possibilidades da avaliação pode contribuir para a formação desse professor no que diz respeito ao compreendido pelos alunos. São analisadas três situações-problema, propostas aos alunos do curso de graduação em Matemática, cujo foco é o modo de avaliar. O olhar avaliativo e o fazer Matemática são entendidos como uma forma de o aluno voltar-se para o conteúdo matemático, abrindo-se ao que, no seu lidar cotidiano, se mostra. Diz-se da importância de se considerarem os "dados relevantes" e o "a ser conhecido" nas situações de avaliação que permitem, ao professor, ler a aprendizagem do aluno em seu modo de se expressar.