985 resultados para Marine mammal


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In accordance with the Marine Mammal Protection Act (MMPA, 16 U.S.c. et seq.), the National Marine Fisheries Service (NMFS) is required to publish an annual List of Fisheries (LOF) which categorizes U.S. commercial fisheries based on their level of interaction with marine mammals. The objective of this document is to provide a characterization of the six 2001 MMPA Category II commercial fisheries (i.e., those with occasional interactions with marine mammals) in North Carolina (NC). This report outlines the history, fishing method and gear configurations (using the U.S. system of measurement), primary target species, temporal and spatial characteristics including trip and landing statistics, and monthly variations in species composition for each fishery for a five-year period (1995 - 1999). (PDF contains 63 pages)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Stranded marine mammals have long attracted public attention. Those that wash up dead are, for all their value to science, seldom seen by the public as more than curiosities. Animals that are sick, injured, orphaned or abandoned ignite a different response. Generally, public sentiment supports any effort to rescue, treat and return them to sea. Institutions displaying marine mammals showed an early interest in live-stranded animals as a source of specimens -- in 1948, Marine Studios in St. Augustine, Florida, rescued a young short-finned pilot whale (Globicephala macrorhynchus), the first ever in captivity (Kritzler 1952). Eventually, the public as well as government agencies looked to these institutions for their recognized expertise in marine mammal care and medicine. More recently, facilities have been established for the sole purpose of rehabilitating marine mammals and preparing them for return to the wild. Four such institutions are the Marine Mammal Center (Sausalito, CA), the Research Institute for Nature Management (Pieterburen, The Netherlands), the RSPCA, Norfolk Wildlife Hospital (Norfolk, United Kingdom) and the Institute for Wildlife Biology of Christian-Albrects University (Kiel, Germany).(PDF contains 68 pages.)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Some 25 to 30 yr ago, when we as students were beginning our respective careers and were developing for the first time our awareness of marine mammals in the waters separating western North America from eastern Asia, we had visions of eventually bridging the communication gap which existed between our two countries at that time. Each of us was anxious to obtain information on the distribution, biology, and ecological relations of "our" seals and walruses on "the other side," beyond our respective political boundari~s where we were not permitted to go to study them. We were concerned that the resource management practices on the other side of the Bering and Chukchi Seas, implemented in isolation, on a purely unilateral basis, might endanger the species which we had come to know and were striving to conserve. At once apparent to both of us was the need for free exchange of biological information between our two countries and, ultimately, joint management of our shared resources. In a small way, we and others made some initial efforts to generate that exchange by personal correspondence and through vocal interchange at the annual meetings of the North Pacific Fur Seal Commission. By the enabling Agreement on Cooperation in the Field of Environmental Protection, reached between our two countries in 1972, our earlier visions at last came true. Since that time, within the framework of the Marine Mammal Project under Area V of that Agreement, we and our colleagues have forged a strong bond of professional accord and respect, in an atmosphere of free intercommunication and mutual understanding. The strength and utility of this arrangement from the beginning of our joint research are reflected in the reports contained in this, the first compendium of our work. The need for a series of such a compendia became apparent to us in 1976, and its implementation was agreed on by the regular meeting of the Project in La Jolla, Calif., in January 1977. Obviously, the preparation and publication of this first volume has been excessively delayed, in part by continuing political distrust between our governments but mainly by increasing demands placed on the time of the contributors. In this period of growing environmental concern in both countries, we and our colleagues have been totally immersed in other tasks and have experienced great difficulty in drawing together the works presented here. Much of the support for doing so was provided by the State of Alaska, through funding for Organized Research at the University of Alaska-Fairbanks. For its ultimate completion in publishable form we wish to thank Helen Stockholm, Director of Publications, Institute of Marine Science, University of Alaska, and her staff, especially Ruth Hand, and the numerous referees narned herein who gave willingly oftheir time to review each ofthe manuscripts critically and to provide a high measure of professionalism to the final product. (PDF file contains 110 pages.)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The U.S. East Coast pelagic longline fishery has a history of interactions with marine mammals, where animals are hooked and entangled in longline gear. Pilot whales (Globicephala spp.) and Risso’s dolphin (Grampus griseus) are the primary species that interact with longline gear. Logistic regression was used to assess the environmental and gear characteristics that influence interaction rates. Pilot whale inter-actions were correlated with warm water temperatures, proximity to the shelf break, mainline lengths greater than 20 nautical miles, and damage to swordfish catch. Similarly, Risso’s dolphin interactions were correlated with geographic location, proximity the shelf break, the length of the mainline, and bait type. The incidental bycatch of marine mammals is likely associated with depredation of the commercial catch and is increased by the overlap between marine mammal and target species habitats. Altering gear characteristics and fishery practices may mitigate incidental bycatch and reduce economic losses due to depredation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The National Marine Fisheries Service (NMFS) launched its National Bycatch Strategy (NBS) in March 2003 in response to the continued fisheries management challenge posed by fisheries bycatch. NMFS has several strong mandates for fish and protected species bycatch reduction, including the Magnuson-Stevens Fishery Conservation and Management Act, the Endangered Species Act, and the Marine Mammal Protection Act. Despite efforts to address bycatch during the 1990’s, NMFS was petitioned in 2002 to count, cap, and control bycatch. The NBS initiated as part of NMFS’s response to the petition for rulemaking contained six components: 1) assess bycatch progress, 2) develop an approach to standardized bycatch reporting methodology, 3) develop bycatch implementation plans, 4) undertake education and outreach, 5) develop new international approaches to bycatch, and 6) identify new funding requirements. The definition of bycatch for the purposes of the NBS proved to be a contentious issue for NMFS, but steady progress is being made by the agency and its partners to minimize bycatch to the extent practicable.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bottlenose dolphins (Tursiops truncatus) inhabit estuarine waters near Charleston, South Carolina (SC) feeding, nursing and socializing. While in these waters, dolphins are exposed to multiple direct and indirect threats such as anthropogenic impacts (egs. harassment with boat traffic and entanglements in fishing gear) and environmental degradation. Bottlenose dolphins are protected under the Marine Mammal Protection Act of 1972. Over the years, the percentage of strandings in the estuaries has increased in South Carolina and, specifically, recent stranding data shows an increase in strandings occurring in Charleston, SC near areas of residential development. During the same timeframe, Charleston experienced a shift in human population towards the coastline. These two trends, rise in estuarine dolphin strandings and shift in human population, have raised questions on whether the increase in strandings is a result of more detectable strandings being reported, or a true increase in stranding events. Using GIS, the trends in strandings were compared to residential growth, boat permits, fishing permits, and dock permits in Charleston County from 1994-2009. A simple linear regression analysis was performed to determine if there were any significant relationships between strandings, boat permits, commercial fishing permits, and crabpot permits. The results of this analysis show the stranding trend moves toward Charleston Harbor and adjacent rivers over time which suggests the increase in strandings is related to the strandings becoming more detectable. The statistical analysis shows that the factors that cause human interaction strandings such as boats, commercial fishing, and crabpot line entanglements are not significantly related to strandings further supporting the hypothesis that the increase in strandings are due to increased observations on the water as human coastal population increases and are not a natural phenomenon. This study has local and potentially regional marine spatial planning implications to protect coastal natural resources, such as the bottlenose dolphin, while balancing coastal development.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A competitive enzyme-linked immunosorbent assay (cELISA) was developed by using a whole-cell antigen from a marine Brucella sp. isolated from a harbor seal (Phoca vitulina). The assay was designed to screen sera from multiple marine mammal species for the presence of antibodies against marine-origin Brucella. Based on comparisons with culture-confirmed cases, specificity and sensitivity for cetacean samples tested were 73% and 100%, respectively. For pinniped samples, specificity and sensitivity values were 77% and 67%, respectively. Hawaiian monk seal (Monachus schauinslandi; n = 28) and bottlenose dolphin (Tursiops truncatus; n = 48) serum samples were tested, and the results were compared with several other assays designed to detect Brucella abortus antibodies. The comparison testing revealed the marine-origin cELISA to be more sensitive than the B. abortus tests by the detection of additional positive serum samples. The newly developed cELISA is an effective serologic method for detection of the presence of antibodies against marine-origin Brucella sp. in marine mammals.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We examined the summer distribution of marine mammals off the northern Washington coast based on six ship transect surveys conducted between 1995 and 2002, primarily from the NOAA ship McArthur. Additionally, small boat surveys were conducted in the same region between 1989 and 2002 to gather photographic identification data on humpback whales (Megaptera novaeangliae) and killer whales (Orcinus orca) to examine movements and population structure. In the six years of ship survey effort, 706 sightings of 15 marine mammal species were made. Humpback whales were the most common large cetacean species and were seen every year and a total of 232 sightings of 402 animals were recorded during ship surveys. Highest numbers were observed in 2002, when there were 79 sightings of 139 whales. Line-transect estimates for humpback whales indicated that about 100 humpback whales inhabited these waters each year between 1995 and 2000; in 2002, however, the estimate was 562 (CV= 0.21) whales. A total of 191 unique individuals were identified photographically and mark recapture estimates also indicated that the number of animals increased from under 100 to over 200 from 1995 to 2002. There was only limited interchange of humpback whales between this area and feeding areas off Oregon and California. Killer whales were also seen on every ship survey and represented all known ecotypes of the Pacific Northwest, including southern and northern residents, transients, and offshore-type killer whales. Dall’s porpoise (Phocoenoides dalli) were the most frequently sighted small cetacean; abundance was estimated at 181−291 individuals, except for 2002 when we observed dramatically higher numbers (876, CV= 0.30). Northern fur seals (Callorhinus ursinus) and elephant seals (Mirounga angustirostris) were the most common pinnipeds observed. There were clear habitat differences related to distance offshore and water depth for different species.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Over the past 50 years, economic and technological developments have dramatically increased the human contribution to ambient noise in the ocean. The dominant frequencies of most human-made noise in the ocean is in the low-frequency range (defined as sound energy below 1000Hz), and low-frequency sound (LFS) may travel great distances in the ocean due to the unique propagation characteristics of the deep ocean (Munk et al. 1989). For example, in the Northern Hemisphere oceans low-frequency ambient noise levels have increased by as much as 10 dB during the period from 1950 to 1975 (Urick 1986; review by NRC 1994). Shipping is the overwhelmingly dominant source of low-frequency manmade noise in the ocean, but other sources of manmade LFS including sounds from oil and gas industrial development and production activities (seismic exploration, construction work, drilling, production platforms), and scientific research (e.g., acoustic tomography and thermography, underwater communication). The SURTASS LFA system is an additional source of human-produced LFS in the ocean, contributing sound energy in the 100-500 Hz band. When considering a document that addresses the potential effects of a low-frequency sound source on the marine environment, it is important to focus upon those species that are the most likely to be affected. Important criteria are: 1) the physics of sound as it relates to biological organisms; 2) the nature of the exposure (i.e. duration, frequency, and intensity); and 3) the geographic region in which the sound source will be operated (which, when considered with the distribution of the organisms will determine which species will be exposed). The goal in this section of the LFA/EIS is to examine the status, distribution, abundance, reproduction, foraging behavior, vocal behavior, and known impacts of human activity of those species may be impacted by LFA operations. To focus our efforts, we have examined species that may be physically affected and are found in the region where the LFA source will be operated. The large-scale geographic location of species in relation to the sound source can be determined from the distribution of each species. However, the physical ability for the organism to be impacted depends upon the nature of the sound source (i.e. explosive, impulsive, or non-impulsive); and the acoustic properties of the medium (i.e. seawater) and the organism. Non-impulsive sound is comprised of the movement of particles in a medium. Motion is imparted by a vibrating object (diaphragm of a speaker, vocal chords, etc.). Due to the proximity of the particles in the medium, this motion is transmitted from particle to particle in waves away from the sound source. Because the particle motion is along the same axis as the propagating wave, the waves are longitudinal. Particles move away from then back towards the vibrating source, creating areas of compression (high pressure) and areas of rarefaction (low pressure). As the motion is transferred from one particle to the next, the sound propagates away from the sound source. Wavelength is the distance from one pressure peak to the next. Frequency is the number of waves passing per unit time (Hz). Sound velocity (not to be confused with particle velocity) is the impedance is loosely equivalent to the resistance of a medium to the passage of sound waves (technically it is the ratio of acoustic pressure to particle velocity). A high impedance means that acoustic particle velocity is small for a given pressure (low impedance the opposite). When a sound strikes a boundary between media of different impedances, both reflection and refraction, and a transfer of energy can occur. The intensity of the reflection is a function of the intensity of the sound wave and the impedances of the two media. Two key factors in determining the potential for damage due to a sound source are the intensity of the sound wave and the impedance difference between the two media (impedance mis-match). The bodies of the vast majority of organisms in the ocean (particularly phytoplankton and zooplankton) have similar sound impedence values to that of seawater. As a result, the potential for sound damage is low; organisms are effectively transparent to the sound – it passes through them without transferring damage-causing energy. Due to the considerations above, we have undertaken a detailed analysis of species which met the following criteria: 1) Is the species capable of being physically affected by LFS? Are acoustic impedence mis-matches large enough to enable LFS to have a physical affect or allow the species to sense LFS? 2) Does the proposed SURTASS LFA geographical sphere of acoustic influence overlap the distribution of the species? Species that did not meet the above criteria were excluded from consideration. For example, phytoplankton and zooplankton species lack acoustic impedance mis-matches at low frequencies to expect them to be physically affected SURTASS LFA. Vertebrates are the organisms that fit these criteria and we have accordingly focused our analysis of the affected environment on these vertebrate groups in the world’s oceans: fishes, reptiles, seabirds, pinnipeds, cetaceans, pinnipeds, mustelids, sirenians (Table 1).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Little is known about the prevalence of the parasite Toxoplasma gondii in the arctic marine food chain of Svalbard, Norway. In this study, plasma samples were analyzed for T. gondii antibodies using a direct agglutination test. Antibody prevalence was 45.6% among polar bears (Ursus maritimus), 18.7% among ringed seals (Pusa hispida) and 66.7% among adult bearded seals (Erignathus barbatus) from Svalbard, but no sign of antibodies were found in bearded seal pups, harbour seals (Phoca vitulina), white whales (Delphinapterus leucas) or narwhals (Monodon monoceros) from the same area. Prevalence was significantly higher in male polar bears (52.3%) compared with females (39.3%), likely due to dietary differences between the sexes. Compared to an earlier study, T. gondii prevalence in polar bears has doubled in the past decade. Consistently, an earlier study on ringed seals did not detect T. gondii. The high recent prevalence in polar bears, ringed seals and bearded seals could be caused by an increase in the number or survivorship of oocysts being transported via the North Atlantic Current to Svalbard from southern latitudes. Warmer water temperatures have led to influxes of temperate marine invertebrate filter-feeders that could be vectors for oocysts and warmer water is also likely to favour higher survivorship of oocycts. However, a more diverse than normal array of migratory birds in the Archipelago recently, as well as a marked increase in cruise-ship and other human traffic are also potential sources of T. gondii.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Total mercury (THg), methylmercury (MeHg) and stable isotopes of nitrogen (d15N) and carbon (d13C) were measured in three invertebrate, five fish, three seabird and three marine mammal species of central West Greenland to investigate trophic transfer of mercury in this Arctic marine food web. The food web magnification factor (FWMF) estimated as the slope of the regression between the natural logarithm of THg or MeHg concentrations (mg/kg dw) and tissue d15N (per mil) was estimated to 0.183 (SE = 0.052) for THg and 0.339 (SE = 0.075) for MeHg. The FWMFs were not only comparable with those reported for other Arctic marine food webs but also with quite different food webs such as freshwater lakes in the sub-Arctic, East Africa and Papua New Guinea. This suggests similar mechanisms of mercury assimilation and isotopic (d15N) discrimination among a broad range of aquatic taxa and underlines the possibility of broad ecosystem comparisons using the combined contaminant and stable isotope approach.