249 resultados para Maneuver evasive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents a high accuracy fully analytical formulation to compute the miss distance and collision probability of two approaching objects following an impulsive collision avoidance maneuver. The formulation hinges on a linear relation between the applied impulse and the objects relative motion in the b-plane, which allows to formulate the maneuver optimization problem as an eigenvalue problem. The optimization criterion consists of minimizing the maneuver cost in terms of delta-V magnitude in order to either maximize collision miss distance or to minimize Gaussian collision probability. The algorithm, whose accuracy is verified in representative mission scenarios, can be employed for collision avoidance maneuver planning with reduced computational cost when compared to fully numerical algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"August 1993."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To understand performance of evasive and interceptive actions it is important to know how people decide when to initiate a movement - initiating at the 'right' moment is often essential for successful performance. It has been proposed that initiation is triggered when a perceptually derived quantity reaches an invariant criterion value. Candidate quantities include time-to-collision (TTC), distance, and rate of image expansion ( ROE), all of which have received empirical support. We studied initiation of an evasive manoeuvre in a computer-simulated steering task in which the observer was required to steer through a stationary visual environment and avoid colliding with an obstacle in their path. The results could not be explained by hypotheses which propose that evasive manoeuvre initiation is based on a fixed criterion value of TTC or distance. The overall pattern was, however, consistent with the use of a criterion ROE value. This was further tested by analyses designed to directly evaluate whether the ROE value used to initiate the response was the same across experimental conditions. Only two of the six participants showed evidence for using the ROE strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Malware is a foundational component of cyber crime that enables an attacker to modify the normal operation of a computer or access sensitive, digital information. Despite the extensive research performed to identify such programs, existing schemes fail to detect evasive malware, an increasingly popular class of malware that can alter its behavior at run-time, making it difficult to detect using today’s state of the art malware analysis systems. In this thesis, we present DVasion, a comprehensive strategy that exposes such evasive behavior through a multi-execution technique. DVasion successfully detects behavior that would have been missed by traditional, single-execution approaches, while addressing the limitations of previously proposed multi-execution systems. We demonstrate the accuracy of our system through strong parallels with existing work on evasive malware, as well as uncover the hidden behavior within 167 of 1,000 samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The over represented number of novice drivers involved in crashes is alarming. Driver training is one of the interventions aimed at mitigating the number of crashes that involve young drivers. To our knowledge, Advanced Driver Assistance Systems (ADAS) have never been comprehensively used in designing an intelligent driver training system. Currently, there is a need to develop and evaluate ADAS that could assess driving competencies. The aim is to develop an unsupervised system called Intelligent Driver Training System (IDTS) that analyzes crash risks in a given driving situation. In order to design a comprehensive IDTS, data is collected from the Driver, Vehicle and Environment (DVE), synchronized and analyzed. The first implementation phase of this intelligent driver training system deals with synchronizing multiple variables acquired from DVE. RTMaps is used to collect and synchronize data like GPS, vehicle dynamics and driver head movement. After the data synchronization, maneuvers are segmented out as right turn, left turn and overtake. Each maneuver is composed of several individual tasks that are necessary to be performed in a sequential manner. This paper focuses on turn maneuvers. Some of the tasks required in the analysis of ‘turn’ maneuver are: detect the start and end of the turn, detect the indicator status change, check if the indicator was turned on within a safe distance and check the lane keeping during the turn maneuver. This paper proposes a fusion and analysis of heterogeneous data, mainly involved in driving, to determine the risk factor of particular maneuvers within the drive. It also explains the segmentation and risk analysis of the turn maneuver in a drive.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Computer vision is much more than a technique to sense and recover environmental information from an UAV. It should play a main role regarding UAVs’ functionality because of the big amount of information that can be extracted, its possible uses and applications, and its natural connection to human driven tasks, taking into account that vision is our main interface to world understanding. Our current research’s focus lays on the development of techniques that allow UAVs to maneuver in spaces using visual information as their main input source. This task involves the creation of techniques that allow an UAV to maneuver towards features of interest whenever a GPS signal is not reliable or sufficient, e.g. when signal dropouts occur (which usually happens in urban areas, when flying through terrestrial urban canyons or when operating on remote planetary bodies), or when tracking or inspecting visual targets—including moving ones—without knowing their exact UMT coordinates. This paper also investigates visual serving control techniques that use velocity and position of suitable image features to compute the references for flight control. This paper aims to give a global view of the main aspects related to the research field of computer vision for UAVs, clustered in four main active research lines: visual serving and control, stereo-based visual navigation, image processing algorithms for detection and tracking, and visual SLAM. Finally, the results of applying these techniques in several applications are presented and discussed: this study will encompass power line inspection, mobile target tracking, stereo distance estimation, mapping and positioning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the development and evaluation of a tactical lane change model using the forward search algorithm, for use in a traffic simulator. The tactical lane change model constructs a set of possible choices of near-term maneuver sequences available to the driver and selects the lane change action at the present time to realize the best maneuver plan. Including near term maneuver planning in the driver behavior model can allow a better representation of the complex interactions in situations such as a weaving section and high-occupancy vehicle (HOV) lane systems where drivers must weave across several lanes in order to access the HOV lanes. To support the investigation, a longitudinal control model and a basic lane change model were also analyzed. The basic lane change model is similar to those used by today's commonly-used traffic simulators. Parameters in all models were best-fit estimated for selected vehicles from a real-world freeway vehicle trajectory data set. The best-fit estimation procedure minimizes the discrepancy between the model vehicle and real vehicle's trajectories. With the best fit parameters, the proposed tactical lane change model gave a better overall performance for a greater number of cases than the basic lane change model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Citizenship is a term of association among strangers. Access to it involves contested identities and symbolic meanings, differing power relations and strategies of inclusion, exclusion and action, and unequal room for maneuver or productivity in the uses of citizenship for any given group or individual. In the context of "rethinking communication," strenuous action is neede to associate such different life chances in a common enterprise at a national level or, more modestly, simply to claim equivalence for all such groups under the rule of one law.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inspection aircraft equipped with cameras and other sensors are routinely used for asset location, inspection, monitoring and hazard identification of oil-gas pipelines, roads, bridges and power transmission grids. This paper is concerned with automated flight of fixed-wing inspection aircraft to track approximately linear infrastructure. We propose a guidance law approach that seeks to maintain aircraft trajectories with desirable position and orientation properties relative to the infrastructure under inspection. Furthermore, this paper also proposes the use of an adaptive maneuver selection approach, in which maneuver primitives are adaptively selected to improve the aircraft’s attitude behaviour. We employ an integrated design methodology particularly suited for an automated inspection aircraft. Simulation studies using full nonlinear semi-coupled six degree-of-freedom equations of motion are used to illustrate the effectiveness of the proposed guidance and adaptive maneuver selection approaches in realistic flight conditions. Experimental flight test results are given to demonstrate the performance of the design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Path planning and trajectory design for autonomous underwater vehicles (AUVs) is of great importance to the oceanographic research community because automated data collection is becoming more prevalent. Intelligent planning is required to maneuver a vehicle to high-valued locations to perform data collection. In this paper, we present algorithms that determine paths for AUVs to track evolving features of interest in the ocean by considering the output of predictive ocean models. While traversing the computed path, the vehicle provides near-real-time, in situ measurements back to the model, with the intent to increase the skill of future predictions in the local region. The results presented here extend prelim- inary developments of the path planning portion of an end-to-end autonomous prediction and tasking system for aquatic, mobile sensor networks. This extension is the incorporation of multiple vehicles to track the centroid and the boundary of the extent of a feature of interest. Similar algorithms to those presented here are under development to consider additional locations for multiple types of features. The primary focus here is on algorithm development utilizing model predictions to assist in solving the motion planning problem of steering an AUV to high-valued locations, with respect to the data desired. We discuss the design technique to generate the paths, present simulation results and provide experimental data from field deployments for tracking dynamic features by use of an AUV in the Southern California coastal ocean.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trajectory design for Autonomous Underwater Vehicles (AUVs) is of great importance to the oceanographic research community. Intelligent planning is required to maneuver a vehicle to high-valued locations for data collection. We consider the use of ocean model predictions to determine the locations to be visited by an AUV, which then provides near-real time, in situ measurements back to the model to increase the skill of future predictions. The motion planning problem of steering the vehicle between the computed waypoints is not considered here. Our focus is on the algorithm to determine relevant points of interest for a chosen oceanographic feature. This represents a first approach to an end to end autonomous prediction and tasking system for aquatic, mobile sensor networks. We design a sampling plan and present experimental results with AUV retasking in the Southern California Bight (SCB) off the coast of Los Angeles.