605 resultados para Manduca sexta
Resumo:
We have cloned a cDNA and gene from the tobacco hornworm, Manduca sexta, which is related to the vertebrate cellular retinoic acid binding proteins (CRABPs). CRABPs are members of the superfamily of lipid binding proteins (LBPs) and are thought to mediate the effects of retinoic acid (RA) on morphogenesis, differentiation, and homeostasis. This discovery of a Manduca sexta CRABP (msCRABP) demonstrates the presence of a CRABP in invertebrates. Compared with bovine/murine CRABP I, the deduced amino acid sequence of msCRABP is 71% homologous overall and 88% homologous for the ligand binding pocket. The genomic organization of msCRABP is conserved with other CRABP family members and the larger LBP superfamily. Importantly, the promoter region contains a motif that resembles an RA response element characteristic of the promoter region of most CRABPs analyzed. Three-dimensional molecular modeling based on postulated structural homology with bovine/murine CRABP I shows msCRABP has a ligand binding pocket that can accommodate RA. The existence of an invertebrate CRABP has significant evolutionary implications, suggesting CRABPs appeared during the evolution of the LBP superfamily well before vertebrate/invertebrate divergence, instead of much later in evolution in selected vertebrates.
Resumo:
The larger of two diuretic hormones of the tobacco hornworm, Manduca sexta, (Mas-DH) is a peptide of 41 residues. It is one of a family of seven currently known insect diuretic hormones that are similar to the corticotropin-releasing factor–urotensin–sauvagine family of peptides. We investigated the possible inactivation of Mas-DH by incubating it in vitro with larval Malpighian tubules (Mt), the target organ of the hormone. The medium was analyzed, and degradation products were identified, using on-line microbore reversed-phase liquid chromatography coupled to electrospray ionization mass spectrometry (RPLC-ESI-MS). This sensitive technique allows identification of metabolites of Mas-DH (present at an initial level of ≈1 μM). An accurate Mr value for a metabolite is usually sufficient for unambiguous identification. Mas-DH is cleaved by Mt proteases initially at L29–R30 and R30–A31 under our assay conditions; some Mas-DH is also oxidized, apparently at M2 and M11. The proteolysis can be inhibited by 5 mM EDTA, suggesting that divalent metals are needed for peptide cleavage. The oxidation of the hormone can be inhibited by catalase or 1 mM methionine, indicating that H2O2 or related reactive oxygen species are responsible for the oxidative degradation observed. RPLC-ESI-MS is shown here to be an elegant and efficient method for studying peptide hormone metabolism resulting from unknown proteases and pathways.
Resumo:
The activation of plant defensive genes in leaves of tomato plants in response to herbivore damage or mechanical wounding is mediated by a mobile 18-amino acid polypeptide signal called systemin. Systemin is derived from a larger, 200-amino acid precursor called prosystemin, similar to polypeptide hormones and soluble growth factors in animals. Systemin activates a lipid-based signaling cascade, also analogous to signaling systems found in animals. In plants, linolenic acid is released from membranes and is converted to the oxylipins phytodienoic acid and jasmonic acid through the octadecanoid pathway. Plant oxylipins are structural analogs of animal prostaglandins which are derived from arachidonic acid in response to various signals, including polypeptide factors. Constitutive overexpression of the prosystemin gene in transgenic tomato plants resulted in the overproduction of prosystemin and the abnormal release of systemin, conferring a constitutive overproduction of several systemic wound-response proteins (SWRPs). The data indicate that systemin is a master signal for defense against attacking herbivores. The same defensive proteins induced by wounding are synthesized in response to oligosaccharide elicitors that are generated in leaf cells in response to pathogen attacks. Inhibitors of the octadecanoid pathway, and a mutation that interrupts this pathway, block the induction of SWRPs by wounding, systemin, and oligosaccharide elicitors, indicating that the octadecanoid pathway is essential for the activation of defense genes by all of these signals. The tomato mutant line that is functionally deficient in the octadecanoid pathway is highly susceptible to attacks by Manduca sexta larvae. The similarities between the defense signaling pathway in tomato leaves and those of the defense signaling pathways of macrophages and mast cells of animals suggests that both the plant and animal pathways may have evolved from a common ancestral origin.
Resumo:
Mycoinsecticides are being used for the control of many insect pests as an environmentally acceptable alternative to chemical insecticides. A key aim of much recent work has been to increase the speed of kill and so improve commercial efficacy of these biocontrol agents. This might he achieved by adding insecticidal genes to the fungus, an approach considered to have enormous potential for the improvement of biological pesticides. We report here the development of a genetically improved entomopathogenic fungus. Additional copies of the gene encoding a regulated cuticle-degrading protease (Pr1) from Metarhizium anisopliae were inserted into the genome of M. anisopliae such that Pr1 was constitutively overproduced in the hemolymph of Manduca sexta, activating the prophenoloxidase system. The combined toxic effects of Pr1 and the reaction products of phenoloxidase caused larvae challenged with the engineered fungus to exhibit a 25% reduction in time of death and reduced food consumption by 40% compared to infections by the wild-type fungus. In addition, infected insects were rapidly melanized, and the resulting cadavers were poor substrates for fungal sporulation. Thus, environmental persistence of the genetically engineered fungus is reduced, thereby providing biological containment.
Resumo:
A diuretic hormone of unusual structure was isolated from extracts of whole heads of the mealworm Tenebrio molitor. The hormone is a 37-aa peptide of 4371 Da, with the sequence SPTISITAPIDVLRKTWEQERARKQMVKNREFLNSLN. This peptide increases cAMP production in Malpighian tubules of T. molitor. The amino acid sequence reveals that this peptide is a member of the family of sauvagine/corticotropin-releasing factor/urotensin I-related insect diuretic hormones. The C-terminal sequence of this peptide is quite different from other members of this family, which have a hydrophobic C terminus (isoleucinamide or valinamide). When aligned comparably, T. molitor diuretic hormone has a more hydrophilic C terminus, leucylasparagine (free acid). In contrast to all other known diuretic hormones of this family, this peptide has exceptionally low stimulatory activity on cAMP production in Malpighian tubules of Manduca sexta. However, at nanomolar concentrations it stimulates cAMP production in Malpighian tubules of T. molitor. Diuretic hormones of this family have been isolated previously from Lepidoptera, Orthoptera, Dictyoptera, and Diptera. This appears to be the first diuretic hormone isolated from a coleopteran insect.
Resumo:
The mechanisms that control the sizes of a body and its many parts remain among the great puzzles in developmental biology. Why do animals grow to a species-specific body size, and how is the relative growth of their body parts controlled to so they grow to the right size, and in the correct proportion with body size, giving an animal its species-characteristic shape? Control of size must involve mechanisms that somehow assess some aspect of size and are upstream of mechanisms that regulate growth. These mechanisms are now beginning to be understood in the insects, in particular in Manduca sexta and Drosophila melanogaster. The control of size requires control of the rate of growth and control of the cessation of growth. Growth is controlled by genetic and environmental factors. Insulin and ecdysone, their receptors, and intracellular signaling pathways are the principal genetic regulators of growth. The secretion of these growth hormones, in turn, is controlled by complex interactions of other endocrine and molecular mechanisms, by environmental factors such as nutrition, and by the physiological mechanisms that sense body size. Although the general mechanisms of growth regulation appear to be widely shared, the mechanisms that regulate final size can be quite diverse.
Resumo:
Most parasitic wasps inject maternal factors into the host hemocoel to suppress the host immune system and ensure successful development of their progeny. Melanization is one of the insect defence mechanisms against intruding pathogens or parasites. We previously isolated from the venom of Cotesia rubecula a 50 kDa protein that blocked melanization in the hemolymph of its host, Pieris rapae [Insect Biochem. Mol. Biol. 33 (2003) 1017]. This protein, designated Vn50, is a serine proteinase homolog (SPH) containing an amino-terminal clip domain. In this work, we demonstrated that recombinant Vn50 bound P. rapae hemolymph components that were recognized by antisera to Tenebrio molitor prophenoloxidase (proPO) and Manduca sexta proPO-activating proteinase (PAP). Vn50 is stable in the host hemolymph-it remained intact for at least 72 It after parasitization. Using M. sexta as a model system, we found that Vn50 efficiently down-regulated proPO activation mediated by M. sexta PAP-1, SPH-1, and SPH-2. Vn50 did not inhibit active phenoloxidase (PO) or PAP-1, but it significantly reduced the proteolysis of proPO. If recombinant Vn50 binds P. rapae proPO and PAP (as suggested by the antibody reactions), it is likely that the molecular interactions among M. sexta proPO, PAP-1, and SPHs were impaired by this venom protein. A similar strategy might be employed by C rubecula to negatively impact the proPO activation reaction in its natural host. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Polydnaviruses are endogenous particles that are crucial for the survival of endoparasitoid wasps, providing active suppression of the immune function of the lepidopteran host in which wasp larvae develop. The Cotesia rubecula bracovirus (CrBV) is unique in that only four gene products are detected in larval host (Pieris rapae) tissues and expression of CrBV genes is transient, occurring between 4 and 12 h post-parasitization. Two of the four genes, CrV1 and CrV3, have been characterized. CrV1 is a secreted glycoprotein that has been implicated in depolymerization of the actin cytoskeleton of host haemocytes, leading to haemocyte inactivation; CrV3 is a multimeric C-type lectin that shares homology with insect immune lectins. Here, a third CrBV-specific gene is described, CrV2, which is expressed in larval P. rapae tissues. CrV2, which is transcribed in haemocytes and fat body cells, has an ORF of 963 bp that produces a glycoprotein of approximately 40 kDa. CrV2 is secreted into haemolymph and appears to be internalized by host haemocytes. CrV2 has a coiled-coil region predicted at its C-terminus, which may be involved in the formation of putative CrV2 trimers that are detected in haemolymph of parasitized host larvae.
Resumo:
Maternal factors introduced into host insects by endoparasitoid wasps are usually essential for successful parasitism. This includes polydnaviruses (PDVs) that are produced in the reproductive organ of female hymenopteran endoparasitoids and are injected, together with venom proteins, into the host hemocoel at oviposition. Inside the host, PDVs enter various tissue cells and hemocytes where viral genes are expressed, leading to developmental and physiological alterations in the host, including the suppression of the host immune system. Although several studies have shown that some PDVs are only effective when accompanied by venom proteins, there is no report of an active venom ingredient(s) facilitating PDV infection and/or gene expression. In this study, we describe a novel peptide (Vn1.5) isolated from Cotesia rubecula venom that is required for the expression of C. rubecula bracoviruses (CrBVs) in host hemocytes (Pieris rapae), although it is not essential for CrBV entry into host cells. The peptide consists of 14 amino acids with a molecular mass of 1598 Da. In the absence of Vn1.5 or total venom proteins, CrBV genes are not expressed in host cells and did not cause inactivation of host hemocytes.
Resumo:
Polydnaviruses (PDVs) are endogenous particles that are used by some endoparasitic hymenoptera to disrupt host immunity and development. Recent analyses of encapsidated PDV genes have increased the number of known PDV gene families, which are often closely related to insect genes. Several PDV proteins inactivate host haemocytes by damaging their actin cytoskeleton. These proteins share no significant sequence homology and occur in polyphyletic PDV genera, possibly indicating that convergent evolution has produced functionally similar immune-suppressive molecules causing a haemocyte phenotype characterised by damaged cytoskeleton and inactivation. These phenomena provide further insights into the immune-suppressive activity of PDVs and raise interesting questions about PDV evolution, a topic that has puzzled researchers ever since the discovery of PDVs.
Resumo:
Background: The development of nervous systems involves reciprocal interactions between neurons and glia. In the Drosophila olfactory system, peripheral glial cells arise from sensory lineages specified by the basic helix- loop- helix transcription factor, Atonal. These glia wrap around the developing olfactory axons early during development and pattern the three distinct fascicles as they exit the antenna. In the moth Manduca sexta, an additional set of central glia migrate to the base of the antennal nerve where axons sort to their glomerular targets. In this work, we have investigated whether similar types of cells exist in the Drosophila antenna. Results: We have used different P( Gal4) lines to drive Green Fluorescent Protein ( GFP) in distinct populations of cells within the Drosophila antenna. Mz317:: GFP, a marker for cell body and perineural glia, labels the majority of peripheral glia. An additional similar to 30 glial cells detected by GH146:: GFP do not derive from any of the sensory lineages and appear to migrate into the antenna from the brain. Their appearance in the third antennal segment is regulated by normal function of the Epidermal Growth Factor receptor and small GTPases. We denote these distinct populations of cells as Mz317- glia and GH146- glia respectively. In the adult, processes of GH146- glial cells ensheath the olfactory receptor neurons directly, while those of the Mz317- glia form a peripheral layer. Ablation of GH146- glia does not result in any significant effects on the patterning of the olfactory receptor axons. Conclusion: We have demonstrated the presence of at least two distinct populations of glial cells within the Drosophila antenna. GH146- glial cells originate in the brain and migrate to the antenna along the newly formed olfactory axons. The number of cells populating the third segment of the antenna is regulated by signaling through the Epidermal Growth Factor receptor. These glia share several features of the sorting zone cells described in Manduca.
Resumo:
Many insect parasitoids that deposit their eggs inside immature stages of other insect species inactivate the cellular host defence to protect the growing embryo from encapsulation. Suppression of encapsulation by polydnavirus-encoded immune-suppressors correlates with specific alterations in hemocytes, mainly cytoskeletal rearrangements and actin-cytoskeleton breakdown. We have previously shown that the Cotesia rubecula polydnavirus gene product CrV1 causes immune suppression when injected into the host hemocoel. CrV1 is taken up by hemocytes although no receptors have been found to bind the protein. Instead CrV1 uptake depends on dimer formation, which is required for interacting with lipophorin, suggesting a CrV1-lipophorin complex internalisation by hemocytes. Since treatment of hemocytes with oligomeric lectins and cytochalasin D can mimic the effects of CrV1, we propose that some dimeric and oligomeric adhesion molecules are able to cross-link receptors on the cell surface and depolymerise actin by leverage-mediated clearance reactions in the hemolymph.
Resumo:
Lipophorin is the major lipid carrier in insects, but various observations indicate that lipophorin is also involved in immune reactions. To examine a possible role of lipophorin in defence reactions, we mixed hemolymph plasma from Galleria mellonella with LPS and noticed that lipophorin forms detergent-insoluble aggregates, while most other plasma proteins are not affected. Lipophorin particles isolated by low-density gradient centrifugation retained LPS-induced aggregation properties, which suggested to us that these immune-reactive particles are able to recognise LPS and respond by forming insoluble aggregates. Antibodies against LPS-binding proteins, such as immulectin-2 and beta-1,3-glucan binding protein, cross-reacted with proteins associated with purified lipophorin particles. To examine whether LPS-mediated aggregates inactivate LPS, we added LPS-lipophorin mixtures to purified lipophorin particles and monitored aggregate formation. Under these conditions lipophorin did not form insoluble aggregates, which indicates that lipophorin particles sequester LPS into non-toxic aggregates. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.