992 resultados para Malignant tumour model
Resumo:
Le neuroblastome (NB) est la tumeur maligne solide extra-crânienne la plus fréquente chez le jeune enfant. L'évolution clinique est très hétérogène, et les NBs de haut risque échappent encore aux traitements les plus agressifs. Diverses études ont montré que les chimiokines et leurs récepteurs, particulièrement l'axe CXCR4/CXCL12, sont impliqués dans la progression tumorale. Dans le NB, l'expression de CXCR4 est corrélée à un pronostic défavorable. De récentes études ont identifié l'expression d'un autre récepteur, CXCR7, présentant une forte affinité pour le ligand CXCL12. Cependant, son implication potentielle dans l'agressivité des NBs reste encore inconnue. Notre étude a pour objectif d'analyser le rôle de CXCR7 dans le comportement malin du NB, et son influence sur la fonctionnalité de l'axe CXCR4/CXCL12. Les profils d'expression de CXCR7 et CXCL12 ont d'abord été évalués sur un large échantillonnage de tissus de NB, incluant des tissus de tumeurs primaires et de métastases, provenant de 156 patients. CXCL12 est fortement détecté dans les vaisseaux et le stroma des tumeurs. Contrairement à CXCR4, CXCR7 n'est que très faiblement exprimé par les tumeurs indifférenciées. Néanmoins, l'expression de CXCR7 augmente dans les tumeurs matures, et se trouve spécifiquement associée aux cellules neurales différentiées, telles que les cellules ganglionnaires. L'expression de CXCR7 est faiblement détectée dans un nombre réduit de lignées de NB, mais peut-être induite suite à des traitements avec des agents de différenciation in vitro. La surexpression de CXCR7, CXCR4 et une combinaison des deux récepteurs dans les lignées IGR-NB8 et SH-SY5Y a permis l'analyse de leur fonction respective. En réponse à leur ligand commun, chaque récepteur induit l'activation de la voie ERK 1/2, mais pas celle de la voie Akt. Contrairement à CXCR4, l'expression exogène de CXCR7 réduit fortement la prolifération des cellules de NB in vitro, et in vivo dans un modèle d'injection sous-cutanée de. souris immunodéprimées. CXCR7 altère également la migration des cellules induite par l'axe CXCR4/CXCL12. De plus, l'utilisation d'un modèle orthotopique murin a démontré que la croissance tumorale induite par CXCR4 peut être fortement retardée lorsque les deux récepteurs sont co-exprimés dans les cellules de NB. Aucune induction de métastases n'a pu être observée dans ce modèle. Cette étude a permis d'identifier un profil d'expression opposé et des rôles distincts pour CXCR7 et CXCR4 dans le NB. En effet, contrairement à CXCR4, CXCR7 présente des propriétés non tumorigéniques et peut être associé au processus de différenciation du NB. De plus, nos analyses suggèrent que CXCR7 peut réguler les mécanismes induits par CXCR4. Ces données ouvrent donc de nouvelles perspectives de recherche quant au rôle de l'axe CXCR7/CXCR4/CXCL12 dans la biologie des NBs. - Neuroblastoma (NB) is a typical childhood and heterogeneous neoplasm for which efficient targeted therapy for high-risk tumours is not yet identified. The chemokine CXCL12, and its receptors CXCR4 and CXCR7 have been involved in tumour progression and dissemination in various cancer models. In the context of NB, CXCR4 expression is associated to undifferentiated tumours and poor prognosis, while the role of CXCR7, the recently identified second CXCL12 receptor, has not yet been elucidated. In this report, CXCR7 and CXCL12 expression were evaluated using a tissue micro-array (TMA) including 156 primary and 56 metastatic NB tissues. CXCL12 was found to be highly associated to NB vascular and stromal structures. In opposite to the CXCR4 expression pattern, the neural-associated CXCR7 expression was extremely low in undifferentiated tumours, while its expression increased in maturated tissues and was specifically associated to the differentiated neural tumour cells. As determined by RT-PCR, CXCR7 expression was only found in a minority of NB cell lines. Moreover, its expression in two CXCR7-negative NB cell lines was further induce upon treatment with differentiation agents in vitro. The relative roles of the two CXCL12 receptors was further assessed by overexpressing individual CXCR7 or CXCR4 receptors, or a combination of both, in the IGR-NB8 and SH-SY5Y NB cell lines. In vitro functional analyses indicated that, in response to their common ligand, both receptors induced activation of ERK 1/2 cascade, but not Akt signaling pathway. CXCR7 strongly reduced in vitro growth, in contrast to CXCR4. Sub-cutaneous implantations of CXCR7-expressing NB cells showed that CXCR7 also drastically reduced in vivo growth. Moreover, CXCR7 impaired CXCR4-mediated chemotaxis, and altered CXCR4-mediated growth when CXCR4/CXCR7-expressing NB cells were engrafted orthotopically in mouse adrenal gland, a CXCL12-producing environment. In such model, CXCR7 alone, or in association with CXCR4, did not induce NB cell metastatic dissemination. In conclusion, the CXCL12 receptors, CXCR7 and CXCR4, revealed opposite expression patterns and distinct functional roles in NB. While CXCR4 favours NB growth and chemotaxis, CXCR7 elicits anti-tumorigenic properties and may be associated with NB differentiation. Importantly, CXCR7 may act as a negative modulator of CXCR4 signaling, further opening new research perspectives for the role of the global CXCR7/CXCR4/CXCL12 axis in NB.
Resumo:
Purpose. To analyse the survival after salvage radiosurgery and to identify prognostic factors. Methods. We retrospectively reviewed 87 consecutive patients, with recurrent high-grade glioma, that underwent stereotactic radiosurgery between 1997 and 2010. We evaluated the survival after initial diagnosis and after reirradiation. The prognostic factors were analysed by bivariate and multivariate Cox regression model. Results. The median age was 48 years old. The primary histology included anaplastic astrocytoma (47%) and glioblastoma (53%). A margin dose of 18 Gy was administered in the majority of cases (74%). The median survival after initial diagnosis was 21 months (39 months for anaplastic astrocytoma and 18.5 months for glioblastoma) and after reirradiation it was 10 months (17 months for anaplastic astrocytoma and 7.5 months for glioblastoma). In the bivariate analyses, the prognostic factors significantly associated with survival after reirradiation were age, tumour and treatment volume at recurrence, recursive partitioning analyses classification, Karnofsky performance score, histology, and margin to the planning target volume. Only the last four showed significant association in the multivariate analyses. Conclusion. stereotactic radiosurgery is a safe and may be an effective treatment option for selected patients diagnosed with recurrent high-grade glioma. The identified prognostic factors could help individualise the treatment.
Resumo:
Background: We demonstrated that DC Bead (Biocompatibles UK, Ltd) could be loaded with sunitinib and injected intra-arterially in the rabbit without unexpected toxicity. The purpose of this study is to evaluate the antitumoral effect of sunitinib eluting beads in the VX2 tumor model of liver cancer. Methods: VX2 tumors were implanted in the left liver lobe of New-Zealand white rabbits. Animals were assigned to 3 groups: Group 1 (n=6) received 1.5mg of sunitinib loaded in 0.05ml of 100-300um DC Bead, group 2 (n=5) received 0.05ml of 100-300um DC Bead, group 3 (n=5) received 0.05ml NaCl 0.9% in the left hepatic artery. One animal in each group was sacrificed at 24 hours and the others were followed for survival until day 15. Liver enzymes were measured daily. In group 1, plasmatic sunitinib concentration were measured daily by LC MS/MS tandem mass spectroscopy. At day 15 all living animals were sacrificed. After sacrifice, the livers were harvested for determination of the VEGF receptor tyrosine kinase activity by western blot and histopathological examination. Results: In group 1, no animals died during follow-up. In group 2, 2 animals died during follow-up on day x. In control group 3, 3 animals died during follow up on day x. In group 1 plasmatic sunitinib levels remained under therapeutic concentration throughout the experiment. Very high concentrations of sunitinib were measured in the liver tissue 24 and 15 days after embolization. Inhibition of the phosphorylation of the RTK was demonstrated at 24h and 15 days in groups 1. Sunitinib eluting beads seemed to penetrate in the tumor more effectively and there was more necrosis around the beads than their bland counterparts. Conclusions: Administration of sunitinib eluting beads in VX2 carrying rabbits resulted invery high drug concentrations at the site of embolization with minimal systemic passage. Despite the very high tissular sunitinib concentration we did not observe any additional toxicity with loaded beads. Sunitinib eluting beads inhibit the activation of RTK's triggered by ischemia and seem to prolong survival of the treated animals. Therefore we consider that local treatment with sunitinib may provide a promising approach for the treatment of liver cancer.
Resumo:
Objective: The pre-treatment of tumor neo-vessels by photodynamic therapy (PDT) was shown to improve the distribution of chemotherapy administered subsequently. However, the precise mechanism by which PDT modifies the tumor vasculature is unknown. We have recently shown that leukocyteendothelial cell interaction was essential for PDT induced drug delivery to normal tissue. Our purpose was to determine if PDT could enhance drug distribution in malignant mesothelioma and if a comparable role for leucocytes existed.Methods: We grew human mesothelioma xenografts (H-meso-1) in the dorsal skinfold chambers of nude mice (n = 28). The rolling, sticking and recruitment of leucocytes was assessed in tumor and normal vessels following PDT (Visudyne 0?4 mg/kg, fluence rate 200 mW/cm2, fluence 60 J/cm2) using intravital microscopy. In parallel, the distribution of a macromolecule (FITC dextran, 2000 kDa) administered after PDT was determined. We compared these variables in control (no PDT), PDT + IgG (non specific antibody) and PDT + pan-selectin antibody (monoclonal P-E-L selectin antibody).Results: PDT significantly enhanced the distribution of FITC dextran in mesothelioma xenografts compared to controls. Interestingly, PDT enhanced the leukocyte-endothelial interaction significantly (rolling and recruitment)in tumor and surrounding normal vessels compared to controls. Leukocyte recruitment was significantly down-regulated by pan-selectin antibodies in tumor tissues. However, the suppression of leucocyte recruitement did not affect the extravasation of FITC-dextran in tumor tissue.Conclusion:PDTpre-treatment of the mesothelioma vasculature can enhance the distribution of macromolecular drugs administered subsequently. However, unlike normal vessels, leukocyte-endothelial cell interaction is not required for PDT induced leakage.
Resumo:
Neuroblastoma (NB) is a heterogeneous, and particularly malignant childhood neoplasm in its higher stages, with a propensity to form metastasis in selected organs, in particular liver and bone marrow, and for which there is still no efficient treatment available beyond surgery. Recent evidence indicates that the CXCR4/CXCL12 chemokine/receptor axis may be involved in promoting NB invasion and metastasis. In this study, we explored the potential role of CXCR4 in the malignant behaviour of NB, using a combination of in vitro functional analyses and in vivo growth and metastasis assessment in an orthotopic NB mouse model. We show here that CXCR4 overexpression in non-metastatic CXCR4-negative NB cells IGR-NB8 and in moderately metastatic, CXCR4 expressing NB cells IGR-N91, strongly increased tumour growth of primary tumours and liver metastases, without altering the frequency or the pattern of metastasis. Moreover shRNA-mediated knock-down experiments confirmed our observations by showing that silencing CXCR4 in NB cells impairs in vitro and almost abrogates in vivo growth. High levels of CXCL12 were detected in the mouse adrenal gland (the primary tumour site), and in the liver suggesting a paracrine effect of host-derived CXCL12 on NB growth. In conclusion, this study reveals a yet unreported NB-specific predominant growth and survival-promoting role of CXCR4, which warrants a critical reconsideration of the role of CXCR4 in the malignant behaviour of NB and other cancers.
Resumo:
Résumé: Le neuroblastome (NB) est un néoplasme dévastateur de la petite enfance, pour lequel il n'existe pas encore de traitement efficace. Les chimiokines et leurs récepteurs ont été impliqués dans la croissance des tumeurs et la formation de métastases, et en particulier, il a été rapporté que l'axe CXCR4/CXCL12 dirigeait le guidage, ainsi que l'invasion des cellules cancéreuses vers des organes spécifiques. Notre étude avait pour objectif d'analyser le rôle de CxCR4 exogène dans le comportement malin du NB, en étudiant la croissance des cellules tumorales, leur capacité de survie, de migration et d'invasion in vitro et en validant ces résultats grâce à un modèle orthotopique murin de la progression tumorale du NB in vivo. La surexpression de CXCR4 dans les cellules faiblement métastatiques IGR-NB8 n'exprimant pas CXCR4, a augmenté la mobilité des cellules vers CXCL12 in vitro. De plus, les cellules surexprimant CXCR4 ont été moins affectées par la privation de sérum que les cellules contrôles. Le volume des tumeurs chez les animaux greffés de manière orthotopique avec les cellules NB8-CXCR4-C3 était significativement plus élevé que celui des tumeurs issues des cellules contrôles NB8-E6 au moment du sacrifice des animaux. Cependant, aucune induction des métastases n'a été observée. La lignée cellulaire IGR-N91, aux propriétés invasives et métastatiques in vivo, exprime constitutivement des quantités modérées de CXCR4. La surexpression du récepteur dans cette lignée a accéléré la croissance tumorale in vivo, mais n'a pas augmenté pas l'occurrence des métastases. Les cellules IGR-N91, dans lesquelles l'expression de CXCR4 a été éteinte, suite à l'introduction de shRNA stable contre CXCR4, a présenté une croissance cellulaire plus lente, in vitro et in vivo. Afin d'identifier les gènes et les voies de signalisation impliqués dans les effets dépendants de CXCR4-CXCL12 dans le NB, des analyses du profil d'expression des gènes ont été effectuées sur les lignées cellulaires transfectées ou non (contrôle). Trois clones contrôles ont été comparés à 3 clones surexprimant CXCR4 pour chacune des lignées (IGR-NB8 et IGR-N91). Les analyses biostatiques ont identifié 10 gènes induits, dont CXCR4, et 31 gènes réprimés, communs entre tous les clones surexprimant CXCR4. Ces observations démontrent que la surexpression de CXCR4 dans le NB stimule la croissance, la survie et la migration chémotactique des cellules tumorales, mais est insuffisante pour induire ou augmenter leurs capacités invasives et métastatiques. Les voies de signalisation activées suite à la surexpression de CXCR4 et identifiées à travers le profil global de l'expression des gènes pourraient être des cibles intéressantes pour le développement de drogues capables d'inhiber la croissance tumorale. Abstact: Neuroblastoma (NB) is a devastating childhood neoplasm for which there is not yet an efficient treatment. Chemokines and their receptors have been involved in tumour growth and metastasis, and in particular the CXCR4/CXCL12 axis has been reported to mediate organ-specific cancer cells homing and invasion. The purpose of the study was to investigate the role of ectopic CXCR4 in the malignant behaviour of NB by studying tumour cell growth, survival, migration, and invasion in vitro and by validating these results using a murine orthotopic model of NB tumour progression in vivo. CXCR4 overexpression in the low metastatic, CXCR4-negative IGR-NB8 cells resulted in CXCL12-mediated chemotaxis in vitro. Furthermore, CXCR4 overexpressing cells were less affected by serum deprivation than mock-transduced cells. In vivo studies revealed that, at sacrifice, volumes of tumours developing in mice with orthotopically implanted NB8-CXCR4-C3 cells, were significantly increased compared to NB8-E6 control tumours. However, no induction of metastases was observed. The in vivo invasive and metastatic cell line IGR-N91 cell line constitutively expresses moderate levels of CXCR4. Overexpression of CXCR4 enhanced in vivo tumour growth but did not increase the occurrence of metastases. IGR-N91 cells where CXCR4 has been knocked-down by stable shRNA grew slower in vitro and in vivo. To identify genes and pathways involved in the CXCR4/CXCL12-mediated effects in NB expression, profiles analyses (Affymetrix) were performed on transduced and control cell lines. Three mock-transduced clones were compared to three CXCR4 overexpressing clones of either cell line IGR-NB8 and IGR-N91. Biostatistical analysis identified 10 commonly upregulated genes (including CXCR4) and 31 downregulated genes common to all CXCR4 overexpressing clones. These observations demonstrate that overexpression of CXCR4 in NB stimulates tumour cell growth, survival, and chemotactic migration but is not sufficient to induce or enhance invasive and metastatic capacities. Activated pathways upon CXCR4 overexpression, identified through global gene expression profiling may be interesting targets for drugs inhibiting tumour growth.
Resumo:
Background: Gamma-linolenic acid is a known inhibitor of tumour cell proliferation and migration in both in vitro and in vivo conditions. The aim of the present study was to determine the mechanisms by which gamma-linolenic acid (GLA) osmotic pump infusion alters glioma cell proliferation, and whether it affects cell cycle control and angiogenesis in the C6 glioma in vivo. Methods: Established C6 rat gliomas were treated for 14 days with 5 mM GLA in CSF or CSF alone. Tumour size was estimated, microvessel density (MVD) counted and protein and mRNA expression measured by immunohistochemistry, western blotting and RT-PCR. Results: GLA caused a significant decrease in tumour size (75 +/- 8.8%) and reduced MVD by 44 +/- 5.4%. These changes were associated with reduced expression of vascular endothelial growth factor (VEGF) (71 +/- 16%) and the VEGF receptor Flt1 (57 +/- 5.8%) but not Flk1. Expression of ERK1/2 was also reduced by 27 +/- 7.7% and 31 +/- 8.7% respectively. mRNA expression of matrix metalloproteinase-2 (MMP2) was reduced by 35 +/- 6.8% and zymography showed MMP2 proteolytic activity was reduced by 32 +/- 8.5%. GLA altered the expression of several proteins involved in cell cycle control. pRb protein expression was decreased (62 +/- 18%) while E2F1 remained unchanged. Cyclin D1 protein expression was increased by 42 +/- 12% in the presence of GLA. The cyclin dependent kinase inhibitors p21 and p27 responded differently to GLA, p27 expression was increased (27 +/- 7.3%) while p21 remained unchanged. The expression of p53 was increased (44 +/- 16%) by GLA. Finally, the BrdU incorporation studies found a significant inhibition (32 +/- 11%) of BrdU incorporation into the tumour in vivo. Conclusion: Overall the findings reported in the present study lend further support to the potential of GLA as an inhibitor of glioma cell proliferation in vivo and show it has direct effects upon cell cycle control and angiogenesis. These effects involve changes in protein expression of VEGF, Flt1, ERK1, ERK2, MMP2, Cyclin D1, pRb, p53 and p27. Combination therapy using drugs with other, complementary targets and GLA could lead to gains in treatment efficacy in this notoriously difficult to treat tumour.
Resumo:
Background: Cancer-cachexia induces a variety of metabolic disorders on protein turnorver, decreasing protein synthesis and increasing protein degradation. Controversly, insulin, other hormones, and branched-chain amino acids, especially leucine, stimulate protein synthesis and modulate the activity of translation initiation factors involved in protein synthesis. Since the tumour effects are more pronounced when associated with pregnancy, ehancing muscle-wasting proteolysis, in this study, the influence of a leucine-rich diet on the protein synthesis caused by cancer were investigated. Methods: Pregnant rats with or without Walker 256 tumour were distributed into six groups. During 20 days of experiment, three groups were fed with a control diet: C - pregnant control, W - tumour-bearing, and P - pair-fed, which received the same amount of food as ingested by the W group; three other groups of pregnant rats were fed a leucine-rich diet: L - pregnant leucine, WL - tumour-bearing, and PL - pair-fed, which received the same amount of food as ingested by the WL group. Results: The gastrocnemius muscle of WL rats showed increased incorporation of leucine in protein compared to W rats; the leucine-rich diet also prevented the decrease in plasma insulin normally seen in W. The expression of translation initiation factors increased when tumour-bearing rats fed leucine-rich diet, with increase of ∼35% for eIF2α and eIF5, ∼17% for eIF4E and 20% for eIF4G; the expression of protein kinase S6K1 and protein kinase C was also highly enhanced. Conclusion: The results suggest that a leucine-rich diet increased the protein synthesis in skeletal muscle in tumour-bearing rats possibly through the activation of eIF factors and/or the S6kinase pathway. © 2007 Ventrucci et al; licensee BioMed Central Ltd.
Resumo:
Neoplastic overgrowth depends on the cooperation of several mutations ultimately leading to major rearrangements in cellular behaviour. The molecular crosstalk occurring between precancerous and normal cells strongly influences the early steps of the tumourigenic process as well as later stages of the disease. Precancerous cells are often removed by cell death from normal tissues but the mechanisms responsible for such fundamental safeguard processes remain in part elusive. To gain insight into these phenomena I took advantage of the clonal analysis methods available in Drosophila for studying the phenotypes due to loss of function of the neoplastic tumour suppressor lethal giant larvae (lgl). I found that lgl mutant cells growing in wild-type imaginal wing discs are subject to the phenomenon of cell competition and are eliminated by JNK-dependent cell death because they express very low levels of dMyc oncoprotein compared to those in the surrounding tissue. Indeed, in non-competitive backgrounds lgl mutant clones are able to overgrow and upregulate dMyc, overwhelming the neighbouring tissue and forming tumourous masses that display several cancer hallmarks. These phenotypes are completely abolished by reducing dMyc abundance within mutant cells while increasing it in lgl clones growing in a competitive context re-establishes their tumourigenic potential. Similarly, the neoplastic growth observed upon the oncogenic cooperation between lgl mutation and activated Ras/Raf/MAPK signalling was found to be characterised by and dependent on the ability of cancerous cells to upregulate dMyc with respect to the adjacent normal tissue, through both transcriptional and post-transcriptional mechanisms, thereby confirming its key role in lgl-induced tumourigenesis. These results provide first evidence that the dMyc oncoprotein is required in lgl mutant tissue to promote invasive overgrowth in developing and adult epithelial tissues and that dMyc abundance inside versus outside lgl mutant clones plays a key role in driving neoplastic overgrowth.
Resumo:
The chromosomal region 17p13.3 is frequently deleted or epigenetically silenced in a variety of human cancers. It includes the hypermethylated in cancer 1 (HIC1) gene placed telomerically to the p53 tumour suppressor gene. HIC1 encodes a transcriptional repressor, and its targets identified to date are genes involved in proliferation, tumour growth and angiogenesis. In addition, HIC1 functionally cooperates with p53 to suppress cancer development. Frequent allelic loss at position 17p13.1 in human cancers often points to mutations of the tumour suppressor p53. However, in a variety of cancer types, allelic loss of the short arm of chromosome 17 may hit regions distal to p53 and, interestingly, without leading to p53 mutations. Furthermore, the neighbouring region 17p13.3 often shows loss of heterozygosity or DNA hypermethylation in various types of solid tumours and leukaemias. In line with this concept, Wales et al. described a new potential tumour suppressor in this region and named it hypermethylated in cancer 1 (HIC1). Further, it was shown that in the majority of cases hypermethylation of this chromosomal region leads to epigenetic inactivation of HIC1. A role for HIC1 in tumour development is further supported by a mouse model, since various spontaneous, age- and gender-specific malignant tumours occur in heterozygous Hic1+/- knockout mice. Furthermore, exogenously delivered HIC1 leads to a significant decrease in clonogenic survival in cancer cell lines. This review highlights the role of HIC1 inactivation in solid tumours and particularly in leukaemia development.
Resumo:
The pre-treatment of tumour neovessels by low-level photodynamic therapy (PDT) improves the distribution of concomitantly administered systemic chemotherapy. The mechanism by which PDT permeabilizes the tumour vessel wall is only partially known. We have recently shown that leukocyte-endothelial cell interaction is essential for photodynamic drug delivery to normal tissue. The present study investigates whether PDT enhances drug delivery in malignant mesothelioma and whether it involves comparable mechanisms of actions.
Resumo:
Pancreatic ductal adenocarcinoma follows a multistep model of progression through precursor lesions called pancreatic intraepithelial neoplasia (PanIN). The high mobility group A1 (HMGA1) and high mobility group A2 (HMGA2) proteins are architectural transcription factors that have been implicated in the pathogenesis and progression of malignant tumours, including pancreatic cancer. The aim of this study was to explore the role of HMGA1 and HMGA2 in pancreatic carcinogenesis.
Resumo:
OBJECT: The aim of this study was to develop and characterize a new orthotopic, syngeneic, transplantable mouse brain tumor model by using the cell lines Tu-9648 and Tu-2449, which were previously isolated from tumors that arose spontaneously in glial fibrillary acidic protein (GFAP)-v-src transgenic mice. METHODS: Striatal implantation of a 1-microl suspension of 5000 to 10,000 cells from either clone into syngeneic B6C3F1 mice resulted in tumors that were histologically identified as malignant gliomas. Prior subcutaneous inoculations with irradiated autologous cells inhibited the otherwise robust development of a microscopically infiltrating malignant glioma. Untreated mice with implanted tumor cells were killed 12 days later, when the resultant gliomas were several millimeters in diameter. Immunohistochemically, the gliomas displayed both the astroglial marker GFAP and the oncogenic form of signal transducer and activator of transcription-3 (Stat3). This form is called tyrosine-705 phosphorylated Stat3, and is found in many malignant entities, including human gliomas. Phosphorylated Stat3 was particularly prominent, not only in the nucleus but also in the plasma membrane of peripherally infiltrating glioma cells, reflecting persistent overactivation of the Janus kinase/Stat3 signal transduction pathway. The Tu-2449 cells exhibited three non-random structural chromosomal aberrations, including a deletion of the long arm of chromosome 2 and an apparently balanced translocation between chromosomes 1 and 3. The GFAP-v-src transgene was mapped to the pericentromeric region of chromosome 18. CONCLUSIONS: The high rate of engraftment, the similarity to the high-grade malignant glioma of origin, and the rapid, locally invasive growth of these tumors should make this murine model useful in testing novel therapies for human malignant gliomas.
Resumo:
In order to overcome the limitations of the linear-quadratic model and include synergistic effects of heat and radiation, a novel radiobiological model is proposed. The model is based on a chain of cell populations which are characterized by the number of radiation induced damages (hits). Cells can shift downward along the chain by collecting hits and upward by a repair process. The repair process is governed by a repair probability which depends upon state variables used for a simplistic description of the impact of heat and radiation upon repair proteins. Based on the parameters used, populations up to 4-5 hits are relevant for the calculation of the survival. The model describes intuitively the mathematical behaviour of apoptotic and nonapoptotic cell death. Linear-quadratic-linear behaviour of the logarithmic cell survival, fractionation, and (with one exception) the dose rate dependencies are described correctly. The model covers the time gap dependence of the synergistic cell killing due to combined application of heat and radiation, but further validation of the proposed approach based on experimental data is needed. However, the model offers a work bench for testing different biological concepts of damage induction, repair, and statistical approaches for calculating the variables of state.
Resumo:
The establishment of a vascular network within tumours is a key step in the progression towards an aggressive, metastatic state, with poor prognosis. We have developed a novel in vitro model to specifically capture the interaction between endothelial cells and solid tumours. Micro-vascularised in vitro tumour constructs were produced by introducing endothelial cells to multicellular spheroids formed in hanging drops. Upon introduction, the endothelial cells migrated into the tumour spheroid, establishing tubular networks and luminal structures. This system relies on the natural pro-angiogenic capacity of multicellular spheroids, and does not require the addition of exogenous angiogenic factors, or use of extracellular-matrix substitutes.