986 resultados para Malayalam Question Answering System


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is the first half of a two-part paper which deals with the social theoretic assumptions underlying system dynamics. The motivation is that clarification in this area can help mainstream social scientists to understand how our field relates to their literature, methods and concerns. Part I has two main sections. The aim of the first is to answer the question: How do the ideas of system dynamics relate to traditional social theories? The theoretic assumptions of the field are seldom explicit but rather are implicit in its practice. The range of system dynamics practice is therefore considered and related to a framework - widely used in both operational research (OR) and systems science - that organises the assumptions behind traditional social theoretic paradigms. Distinct and surprisingly varied groupings of practice are identified, making it difficult to place system dynamics in any one paradigm with any certainty. The difficulties of establishing a social theoretic home for system dynamics are exemplified in the second main section. This is done by considering the question: Is system dynamics deterministic? An analysis shows that attempts to relate system dynamics to strict notions of voluntarism or determinism quickly indicate that the field does not fit with either pole of this dichotomous, and strictly paradigmatic, view. Part I therefore concludes that definitively placing system dynamics with respect to traditional social theories is highly problematic. The scene is therefore set for Part II of the paper, which proposes an innovative and potentially fruitful resolution to this problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the evaluation of a QA system for the treatment of complex temporal questions. The system was implemented in a multilayered architecture where complex temporal questions are first decomposed into simple questions, according to the temporal relations expressed in the original question. These simple questions are then processed independently by our standard Question Answering engine and their respective answers are filtered to satisfy the temporal restrictions of each simple question. The answers to the simple decomposed questions are then combined, according to the temporal relations extracted from the original complex question, to give the final answer. This evaluation was performed as a pilot task in the Spanish QA Track of the Cross Language Evaluation Forum 2004.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Answer Validation Exercise (AVE) is a pilot track within the Cross-Language Evaluation Forum (CLEF) 2006. The AVE competition provides an evaluation frame- work for answer validations in Question Answering (QA). In our participation in AVE, we propose a system that has been initially used for other task as Recognising Textual Entailment (RTE). The aim of our participation is to evaluate the improvement our system brings to QA. Moreover, due to the fact that these two task (AVE and RTE) have the same main idea, which is to find semantic implications between two fragments of text, our system has been able to be directly applied to the AVE competition. Our system is based on the representation of the texts by means of logic forms and the computation of semantic comparison between them. This comparison is carried out using two different approaches. The first one managed by a deeper study of the Word- Net relations, and the second uses the measure defined by Lin in order to compute the semantic similarity between the logic form predicates. Moreover, we have also designed a voting strategy between our system and the MLEnt system, also presented by the University of Alicante, with the aim of obtaining a joint execution of the two systems developed at the University of Alicante. Although the results obtained have not been very high, we consider that they are quite promising and this supports the fact that there is still a lot of work on researching in any kind of textual entailment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a multilingual method for event ordering based on temporal expression resolution is presented. This method has been implemented through the TERSEO system which consists of three main units: temporal expression recognizing, resolution of the coreference introduced by these expressions, and event ordering. By means of this system, chronological information related to events can be extracted from documental databases. This information is automatically added to the documental database in order to allow its use by question answering systems in those cases referring to temporality. The system has been evaluated obtaining results of 91 % precision and 71 % recall. For this, a blind evaluation process has been developed guaranteing a reliable annotation process that was measured through the kappa factor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los sistemas de búsqueda de respuestas (BR) se pueden considerar como potenciales sucesores de los buscadores tradicionales de información en la Web. Para que sean precisos deben adaptarse a dominios concretos mediante el uso de recursos semánticos adecuados. La adaptación no es una tarea trivial, ya que deben integrarse e incorporarse a sistemas de BR existentes varios recursos heterogéneos relacionados con un dominio restringido. Se presenta la herramienta Maraqa, cuya novedad radica en el uso de técnicas de ingeniería del software, como el desarrollo dirigido por modelos, para automatizar dicho proceso de adaptación a dominios restringidos. Se ha evaluado Maraqa mediante una serie de experimentos (sobre el dominio agrícola) que demuestran su viabilidad, mejorando en un 29,5% la precisión del sistema adaptado.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Decision support systems (DSS) support business or organizational decision-making activities, which require the access to information that is internally stored in databases or data warehouses, and externally in the Web accessed by Information Retrieval (IR) or Question Answering (QA) systems. Graphical interfaces to query these sources of information ease to constrain dynamically query formulation based on user selections, but they present a lack of flexibility in query formulation, since the expressivity power is reduced to the user interface design. Natural language interfaces (NLI) are expected as the optimal solution. However, especially for non-expert users, a real natural communication is the most difficult to realize effectively. In this paper, we propose an NLI that improves the interaction between the user and the DSS by means of referencing previous questions or their answers (i.e. anaphora such as the pronoun reference in “What traits are affected by them?”), or by eliding parts of the question (i.e. ellipsis such as “And to glume colour?” after the question “Tell me the QTLs related to awn colour in wheat”). Moreover, in order to overcome one of the main problems of NLIs about the difficulty to adapt an NLI to a new domain, our proposal is based on ontologies that are obtained semi-automatically from a framework that allows the integration of internal and external, structured and unstructured information. Therefore, our proposal can interface with databases, data warehouses, QA and IR systems. Because of the high NL ambiguity of the resolution process, our proposal is presented as an authoring tool that helps the user to query efficiently in natural language. Finally, our proposal is tested on a DSS case scenario about Biotechnology and Agriculture, whose knowledge base is the CEREALAB database as internal structured data, and the Web (e.g. PubMed) as external unstructured information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While semantic search technologies have been proven to work well in specific domains, they still have to confront two main challenges to scale up to the Web in its entirety. In this work we address this issue with a novel semantic search system that a) provides the user with the capability to query Semantic Web information using natural language, by means of an ontology-based Question Answering (QA) system [14] and b) complements the specific answers retrieved during the QA process with a ranked list of documents from the Web [3]. Our results show that ontology-based semantic search capabilities can be used to complement and enhance keyword search technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Semantic Web (SW) offers an opportunity to develop novel, sophisticated forms of question answering (QA). Specifically, the availability of distributed semantic markup on a large scale opens the way to QA systems which can make use of such semantic information to provide precise, formally derived answers to questions. At the same time the distributed, heterogeneous, large-scale nature of the semantic information introduces significant challenges. In this paper we describe the design of a QA system, PowerAqua, designed to exploit semantic markup on the web to provide answers to questions posed in natural language. PowerAqua does not assume that the user has any prior information about the semantic resources. The system takes as input a natural language query, translates it into a set of logical queries, which are then answered by consulting and aggregating information derived from multiple heterogeneous semantic sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Value of online Question Answering (QandA) communities is driven by the question-answering behaviour of its members. Finding the questions that members are willing to answer is therefore vital to the effcient operation of such communities. In this paper, we aim to identify the parameters that cor- relate with such behaviours. We train different models and construct effective predictions using various user, question and thread feature sets. We show that answering behaviour can be predicted with a high level of success.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research endeavors on spoken dialogue systems in the 1990s and 2000s have led to the deployment of commercial spoken dialogue systems (SDS) in microdomains such as customer service automation, reservation/booking and question answering systems. Recent research in SDS has been focused on the development of applications in different domains (e.g. virtual counseling, personal coaches, social companions) which requires more sophistication than the previous generation of commercial SDS. The focus of this research project is the delivery of behavior change interventions based on the brief intervention counseling style via spoken dialogue systems. ^ Brief interventions (BI) are evidence-based, short, well structured, one-on-one counseling sessions. Many challenges are involved in delivering BIs to people in need, such as finding the time to administer them in busy doctors' offices, obtaining the extra training that helps staff become comfortable providing these interventions, and managing the cost of delivering the interventions. Fortunately, recent developments in spoken dialogue systems make the development of systems that can deliver brief interventions possible. ^ The overall objective of this research is to develop a data-driven, adaptable dialogue system for brief interventions for problematic drinking behavior, based on reinforcement learning methods. The implications of this research project includes, but are not limited to, assessing the feasibility of delivering structured brief health interventions with a data-driven spoken dialogue system. Furthermore, while the experimental system focuses on harmful alcohol drinking as a target behavior in this project, the produced knowledge and experience may also lead to implementation of similarly structured health interventions and assessments other than the alcohol domain (e.g. obesity, drug use, lack of exercise), using statistical machine learning approaches. ^ In addition to designing a dialog system, the semantic and emotional meanings of user utterances have high impact on interaction. To perform domain specific reasoning and recognize concepts in user utterances, a named-entity recognizer and an ontology are designed and evaluated. To understand affective information conveyed through text, lexicons and sentiment analysis module are developed and tested.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research endeavors on spoken dialogue systems in the 1990s and 2000s have led to the deployment of commercial spoken dialogue systems (SDS) in microdomains such as customer service automation, reservation/booking and question answering systems. Recent research in SDS has been focused on the development of applications in different domains (e.g. virtual counseling, personal coaches, social companions) which requires more sophistication than the previous generation of commercial SDS. The focus of this research project is the delivery of behavior change interventions based on the brief intervention counseling style via spoken dialogue systems. Brief interventions (BI) are evidence-based, short, well structured, one-on-one counseling sessions. Many challenges are involved in delivering BIs to people in need, such as finding the time to administer them in busy doctors' offices, obtaining the extra training that helps staff become comfortable providing these interventions, and managing the cost of delivering the interventions. Fortunately, recent developments in spoken dialogue systems make the development of systems that can deliver brief interventions possible. The overall objective of this research is to develop a data-driven, adaptable dialogue system for brief interventions for problematic drinking behavior, based on reinforcement learning methods. The implications of this research project includes, but are not limited to, assessing the feasibility of delivering structured brief health interventions with a data-driven spoken dialogue system. Furthermore, while the experimental system focuses on harmful alcohol drinking as a target behavior in this project, the produced knowledge and experience may also lead to implementation of similarly structured health interventions and assessments other than the alcohol domain (e.g. obesity, drug use, lack of exercise), using statistical machine learning approaches. In addition to designing a dialog system, the semantic and emotional meanings of user utterances have high impact on interaction. To perform domain specific reasoning and recognize concepts in user utterances, a named-entity recognizer and an ontology are designed and evaluated. To understand affective information conveyed through text, lexicons and sentiment analysis module are developed and tested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Community-driven Question Answering (CQA) systems that crowdsource experiential information in the form of questions and answers and have accumulated valuable reusable knowledge. Clustering of QA datasets from CQA systems provides a means of organizing the content to ease tasks such as manual curation and tagging. In this paper, we present a clustering method that exploits the two-part question-answer structure in QA datasets to improve clustering quality. Our method, {\it MixKMeans}, composes question and answer space similarities in a way that the space on which the match is higher is allowed to dominate. This construction is motivated by our observation that semantic similarity between question-answer data (QAs) could get localized in either space. We empirically evaluate our method on a variety of real-world labeled datasets. Our results indicate that our method significantly outperforms state-of-the-art clustering methods for the task of clustering question-answer archives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A computer vision system that has to interact in natural language needs to understand the visual appearance of interactions between objects along with the appearance of objects themselves. Relationships between objects are frequently mentioned in queries of tasks like semantic image retrieval, image captioning, visual question answering and natural language object detection. Hence, it is essential to model context between objects for solving these tasks. In the first part of this thesis, we present a technique for detecting an object mentioned in a natural language query. Specifically, we work with referring expressions which are sentences that identify a particular object instance in an image. In many referring expressions, an object is described in relation to another object using prepositions, comparative adjectives, action verbs etc. Our proposed technique can identify both the referred object and the context object mentioned in such expressions. Context is also useful for incrementally understanding scenes and videos. In the second part of this thesis, we propose techniques for searching for objects in an image and events in a video. Our proposed incremental algorithms use the context from previously explored regions to prioritize the regions to explore next. The advantage of incremental understanding is restricting the amount of computation time and/or resources spent for various detection tasks. Our first proposed technique shows how to learn context in indoor scenes in an implicit manner and use it for searching for objects. The second technique shows how explicitly written context rules of one-on-one basketball can be used to sequentially detect events in a game.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Question Answering systems that resort to the Semantic Web as a knowledge base can go well beyond the usual matching words in documents and, preferably, find a precise answer, without requiring user help to interpret the documents returned. In this paper, the authors introduce a Dialogue Manager that, through the analysis of the question and the type of expected answer, provides accurate answers to the questions posed in Natural Language. The Dialogue Manager not only represents the semantics of the questions, but also represents the structure of the discourse, including the user intentions and the questions context, adding the ability to deal with multiple answers and providing justified answers. The authors’ system performance is evaluated by comparing with similar question answering systems. Although the test suite is slight dimension, the results obtained are very promising.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mapas Conceituais são representações gráficas do conhecimento de uma pessoa num dado momento e área de conhecimento. Por sua natureza investigativa, são utilizados como ferramentas de apoio em abordagens pedagógicas que objetivam promover a aprendizagem significativa. No entanto, o processo de avaliação de um mapa tende a ser custoso pois acarreta uma pesada carga de processamento cognitivo por parte do avaliador, já que este precisa mapear os conceitos e relações em busca de nuances de conhecimento alí presentes. Essa pesquisa tem por objetivo aumentar o nível de abstração nas interações entre o avaliador e os mapas conceituais fornecendo uma camada intermediária de inteligência computacional que favoreça a comunicação por meio de perguntas e respostas em linguagem natural, fornecendo ao avaliador ferramentas que lhe permita examinar o conteúdo do mapa conceitual sem exigir deste o mapeamento visual dos conceitos e relações presentes nos mapas avaliados. Uma ferramenta é prototipada e uma prova de conceito apresentada. A análise da arquitetura proposta permitiu definir uma arquitetura final com características que permitem potencializar o uso de mapas conceituais e facilitar diversas operações pedagógicas com estes. Essa pesquisa situa-se na área de investigação de sistemas de perguntas e resposta, aplicando técnicas de processamento de linguagem natural para análise da pergunta e interpretação do mapa conceitual e aplica técnica de inteligência artificial para inferir respostas às perguntas.