905 resultados para Magnetismus, Fe-Ti-O-Phasensystem, Co-Ti-O-Phasensystem
Resumo:
The compounds [Fe(bda)(CO)(2)L] and [Fe(ch)(CO)(2)L], (bda=benzylideneacetone; ch=chalcone; L=CO, PPh3) were investigated by thermogravimetry and derivative thermogravimetry (TG and DTG). The fragmentation patterns suggest that the iron atom protects the enone fragment, so that the organic ligands break up with the loss of the pendant aromatic rings.
Resumo:
Tungsten contents in iron-manganese nodules and crusts from different parts of the World Ocean, as well as its relationships with a number of chemical elements are under consideration. A trend to correlation of tungsten with Fe, Ti, W, Pb, and Co is noticed. Comparison of tungsten contents in the nodules and host sediments indicates its low geochemical mobility.
Resumo:
This study focuses on the analysis of lake sediments retrieved from the deepest part of Lake Nam Co (Tibetan Plateau). One gravity core of 115 cm length, covering the last ~ 4000 cal BP, was analyzed for geochemical and biological parameters. High organic content at ~ 4000 cal BP and the coinciding presence of pyrite framboids until ~ 2000 cal BP point to hampered decomposition of organic material due to anoxic conditions within the lake sediments. At the same time sedimentological and biological proxies suggest a rather high lake level, but still ~ 5 m below the recent one, with less saline lake water due to enhanced monsoonal activity. During this time a change in the source of organic matter to lowered input of terrestrial components is observed. A rather quick shift to a dry environment with less monsoonal influence and a lake level ~ 15 m lower than today at ~ 2000 cal BP lead to the oxygenation of sediment, the degradation of organic matter and the absence of pyrite. Oscillations of the lake level thereafter were of minor amplitude and not able to establish anoxia at the lake bottom again. A wet spell between ~ 1500 cal BP and ~ 1150 cal BP is visible in proxies referring to catchment hydrology and the ostracod-based water depth transfer function gives only a slightly elevated lake level. The last ~ 300 years are characterized by low TOC and rising TN values reflecting enhanced nutrient supply and hence an advancing influence of human activity in the catchment. Decreasing TOC/TN values point to a complete shift to almost solely aquatic biomass production. These results show that hydrological variations in terms of lake level change based on monsoonal strength can be linked to redox conditions at the lake bottom of Nam Co. Comparison with other archives over larger parts of the Tibetan Plateau and beyond exhibits a rather homogeneous climatic pattern throughout the late Holocene.
Resumo:
An extensive, high-resolution, sedimentological-geochemical survey was done using geo-acoustics, XRF-core scans, ICP-AES, AMS 14C-dating and grain size analyses of sediments in 11 cores from the Gulf of Taranto, the southern Adriatic Sea, and the central Ionian Sea spanning the last 16 cal. ka BP. Comparable results were obtained for cores from the Gallipoli Shelf (eastern Gulf of Taranto), and the southern Adriatic Sea suggesting that the dominant provenance of Gallipoli Shelf sediments is from the western Adriatic mud belt. The 210Pb and 14C-dated high-accumulation-rate sediments permit a detailed reconstruction of climate variability over the last 16 cal. ka BP. Although, the Glacial-Interglacial transition is generally dry and stable these conditions are interrupted by two phases of increased detrital input during the Bølling-Allerød and the late Younger Dryas. The event during the Younger Dryas period is characterized by increased sediment inputs from southern Italian sources. This suggests that run-off was higher in southern- compared to northern Italy. At approximately ~ 7 cal. ka BP, increased detrital input from the Adriatic mud belt, related to sea level rise and the onset of deep water formation in the Adriatic Sea, is observed and is coincident with the end of sapropel S1 formation in the southern Adriatic Sea. During the mid-to-late Holocene we observed millennial-scale events of increased detrital input, e.g. during the Roman Humid Period, and of decreased detrital input, e.g., Medieval Warm Period. These dry/wet spells are consistent with variability in the North Atlantic Oscillation (NAO). A negative state of the NAO and thus a more advanced penetration of the westerlies into the central Mediterranean, that result in wet conditions in the research area concord with events of high detrital input e.g., during the Roman Humid Period. In contrast, a positive state of the NAO, resulting in dry conditions in the Mediterranean, dominated during events of rapid climate change such as the Medieval Warm Period and the Bronze Age.
Resumo:
Data on internal structure, distribution, and chemical composition of iron-manganese nodules from the central part of the South Pacific are reported. Nodules with relatively high contents of Fe, Ti, Co, and Pb were found. Formation of these nodules in pelagic regions of the ocean with low sedimentation rates is tentatively ascribed by the authors to leaching of Fe, Mn, and some minor elements during submarine lava outflow and to geochemical mobility of these elements. The role of diagenetic re-distribution of ore elements during formation of nodules is also discussed.
Resumo:
A number of regularities of ore element accumulation in iron-manganese nodules along the profile from the Tsugaru Strait to the Wake Atoll is identified in the paper. It is shown that the ore process is enhanced to the pelagic zone: in nodules content of ore material increases and content of mineral insoluble residue decreases from near-shore areas to central parts of the ocean. Diagenetic redistribution of the elements between host sediments and nodules resulting to enrichment of the latter increases from bottom sediments of the ocean periphery to fine grained pelagic muds. At absolute enrichment by Fe, Mn, Cu, Ni, Co, Mo, W, Ti, Zr, and V (as compared to host sediments) nodules are relatively enriched in Mn group elements (Cu, Ni, Co, Mo, W) and consequently depleted in Fe group elements (Ti, V, Zr) in the direction from the periphery to the center of the ocean. The ratio of reactive forms of Fe and Mn in host sediments is a factor determining the ratio of Fe group and Mn group elements in nodules.
Resumo:
Nanostructured tungsten oxide thin film based gas sensors have been developed by thermal evaporation method to detect CO at low operating temperatures. The influence of Fe-doping and annealing heat treatment on microstructural and gas sensing properties of these films have been investigated. Fe was incorporated in WO3 film by co-evaporation and annealing was performed at 400oC for 2 hours in air. AFM analysis revealed a grain size of about 10-15 nm in all the films. GIXRD analysis showed that as-deposited films are amorphous and annealing at 400oC improved the crystallinity. Raman and XRD analysis indicated that Fe is incorporated in the WO3 matrix as a substitutional impurity, resulting in shorter O-W-O bonds and lattice cell parameters. Doping with Fe contributed significantly towards CO sensing performance of WO3 thin films. A good response to various concentrations (10-1000 ppm) of CO has been achieved with 400oC annealed Fe-doped WO3 film at a low operating temperature of 150oC.
Resumo:
Hydrogen bonded complexes formed between the square pyramidal Fe(CO)(5) with HX (X = F, Cl, Br), showing X-H center dot center dot center dot Fe interactions, have been investigated theoretically using density functional theory (DFT) including dispersion correction. Geometry, interaction energy, and large red shift of about 400 cm(-1) in the FIX stretching frequency confirm X-H center dot center dot center dot Fe hydrogen bond formation. In the (CO)(5)Fe center dot center dot center dot HBr complex, following the significant red shift, the HBr stretching mode is coupled with the carbonyl stretching modes. This clearly affects the correlation between frequency shift and binding energy, which is a hallmark of hydrogen bonds. Atoms in Molecule (AIM) theoretical analyses show the presence of a bond critical point between the iron and the hydrogen of FIX and significant mutual penetration. These X-H center dot center dot center dot Fe hydrogen bonds follow most but not all of the eight criteria proposed by Koch and Popelier (J. Phys. Chem. 1995, 99, 9747) based on their investigations on C-H center dot center dot center dot O hydrogen bonds. Natural bond orbital (NBO) analysis indicates charge transfer from the organometallic system to the hydrogen bond donor. However, there is no correlation between the extent of charge transfer and interaction,energy, contrary to what is proposed in the recent IUPAC recommendation (Pure Appl.. Chem. 2011, 83, 1637). The ``hydrogen bond radius'' for iron has been determined to be 1.60 +/- 0.02 angstrom, and not surprisingly it is between the covalent (127 angstrom) and van der Waals (2.0) radii of Fe. DFT and AIM theoretical studies reveal that Fe in square pyramidal Fe(CO)(5) can also form halogen bond with CIF and ClH as ``halogen bond donor''. Both these complexes show mutual penetration as well, though the Fe center dot center dot center dot Cl distance is closer to the sum of van der Waals radii of Fe and Cl in (CO)5Fe center dot center dot center dot ClH, and it is about 1 angstrom less in (CO)(5)Fe center dot center dot center dot ClF.