1000 resultados para Magnetical field
Resumo:
A point interpolation method with locally smoothed strain field (PIM-LS2) is developed for mechanics problems using a triangular background mesh. In the PIM-LS2, the strain within each sub-cell of a nodal domain is assumed to be the average strain over the adjacent sub-cells of the neighboring element sharing the same field node. We prove theoretically that the energy norm of the smoothed strain field in PIM-LS2 is equivalent to that of the compatible strain field, and then prove that the solution of the PIM- LS2 converges to the exact solution of the original strong form. Furthermore, the softening effects of PIM-LS2 to system and the effects of the number of sub-cells that participated in the smoothing operation on the convergence of PIM-LS2 are investigated. Intensive numerical studies verify the convergence, softening effects and bound properties of the PIM-LS2, and show that the very ‘‘tight’’ lower and upper bound solutions can be obtained using PIM-LS2.
Resumo:
The most costly operations encountered in pairing computations are those that take place in the full extension field Fpk . At high levels of security, the complexity of operations in Fpk dominates the complexity of the operations that occur in the lower degree subfields. Consequently, full extension field operations have the greatest effect on the runtime of Miller’s algorithm. Many recent optimizations in the literature have focussed on improving the overall operation count by presenting new explicit formulas that reduce the number of subfield operations encountered throughout an iteration of Miller’s algorithm. Unfortunately, almost all of these improvements tend to suffer for larger embedding degrees where the expensive extension field operations far outweigh the operations in the smaller subfields. In this paper, we propose a new way of carrying out Miller’s algorithm that involves new explicit formulas which reduce the number of full extension field operations that occur in an iteration of the Miller loop, resulting in significant speed ups in most practical situations of between 5 and 30 percent.
Resumo:
Miller’s algorithm for computing pairings involves perform- ing multiplications between elements that belong to different finite fields. Namely, elements in the full extension field Fpk are multiplied by elements contained in proper subfields F pk/d , and by elements in the base field Fp . We show that significant speedups in pairing computations can be achieved by delaying these “mismatched” multiplications for an optimal number of iterations. Importantly, we show that our technique can be easily integrated into traditional pairing algorithms; implementers can exploit the computational savings herein by applying only minor changes to existing pairing code.
Resumo:
Undertaking empirical research on crime and violence can be a tricky enterprise fraught with ethical, methodological, intellectual and legal implications. This chapter takes readers on a reflective journey through the qualitative methodologies I used to research sex work in Kings Cross, miscarriages of justice, female delinquency, sexual violence, and violence in rural and regional settings over a period of nearly 30 years. Reflecting on these experiences, the chapter explores and analyses the reality of doing qualitative field research, the role of the researcher, the politics of subjectivity, the exercise of power, and the ‘muddiness’ of the research process, which is often overlooked in sanitised accounts of the research process (Byrne-Armstrong, Higgs and Horsfall, 2001; Davies, 2000).
Resumo:
The iPlan treatment planning sys-tem uses a pencil beam algorithm, with density cor-rections, to predict the doses delivered by very small (stereotactic) radiotherapy fields. This study tests the accuracy of dose predictions made by iPlan, for small-field treatments delivered to a planar solid wa-ter phantom and to heterogeneous human tissue using the BrainLAB m3 micro-multileaf collimator.
Resumo:
Maintenance activities in a large-scale engineering system are usually scheduled according to the lifetimes of various components in order to ensure the overall reliability of the system. Lifetimes of components can be deduced by the corresponding probability distributions with parameters estimated from past failure data. While failure data of the components is not always readily available, the engineers have to be content with the primitive information from the manufacturers only, such as the mean and standard deviation of lifetime, to plan for the maintenance activities. In this paper, the moment-based piecewise polynomial model (MPPM) are proposed to estimate the parameters of the reliability probability distribution of the products when only the mean and standard deviation of the product lifetime are known. This method employs a group of polynomial functions to estimate the two parameters of the Weibull Distribution according to the mathematical relationship between the shape parameter of two-parameters Weibull Distribution and the ratio of mean and standard deviation. Tests are carried out to evaluate the validity and accuracy of the proposed methods with discussions on its suitability of applications. The proposed method is particularly useful for reliability-critical systems, such as railway and power systems, in which the maintenance activities are scheduled according to the expected lifetimes of the system components.