976 resultados para Magnetic memory (Computers).


Relevância:

30.00% 30.00%

Publicador:

Resumo:

As computers approach the physical limits of information storable in memory, new methods will be needed to further improve information storage and retrieval. We propose a quantum inspired vector based approach, which offers a contextually dependent mapping from the subsymbolic to the symbolic representations of information. If implemented computationally, this approach would provide exceptionally high density of information storage, without the traditionally required physical increase in storage capacity. The approach is inspired by the structure of human memory and incorporates elements of Gardenfors’ Conceptual Space approach and Humphreys et al.’s matrix model of memory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Converging evidence from epidemiological, clinical and neuropsychological research suggests a link between cannabis use and increased risk of psychosis. Long-term cannabis use has also been related to deficit-like “negative” symptoms and cognitive impairment that resemble some of the clinical and cognitive features of schizophrenia. The current functional brain imaging study investigated the impact of a history of heavy cannabis use on impaired executive function in first-episode schizophrenia patients. Whilst performing the Tower of London task in a magnetic resonance imaging scanner, event-related blood oxygenation level-dependent (BOLD) brain activation was compared between four age and gender-matched groups: 12 first-episode schizophrenia patients; 17 long-term cannabis users; seven cannabis using first-episode schizophrenia patients; and 17 healthy control subjects. BOLD activation was assessed as a function of increasing task difficulty within and between groups as well as the main effects of cannabis use and the diagnosis of schizophrenia. Cannabis users and non-drug using first-episode schizophrenia patients exhibited equivalently reduced dorsolateral prefrontal activation in response to task difficulty. A trend towards additional prefrontal and left superior parietal cortical activation deficits was observed in cannabis-using first-episode schizophrenia patients while a history of cannabis use accounted for increased activation in the visual cortex. Cannabis users and schizophrenia patients fail to adequately activate the dorsolateral prefrontal cortex, thus pointing to a common working memory impairment which is particularly evident in cannabis-using first-episode schizophrenia patients. A history of heavy cannabis use, on the other hand, accounted for increased primary visual processing, suggesting compensatory imagery processing of the task.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regional cerebral blood flow (rCBF) and blood oxygenation level-dependent (BOLD) contrasts represent different physiological measures of brain activation. The present study aimed to compare two functional brain imaging techniques (functional magnetic resonance imaging versus [15O] positron emission tomography) when using Tower of London (TOL) problems as the activation task. A categorical analysis (task versus baseline) revealed a significant BOLD increase bilaterally for the dorsolateral prefrontal and inferior parietal cortex and for the cerebellum. A parametric haemodynamic response model (or regression analysis) confirmed a task-difficulty-dependent increase of BOLD and rCBF for the cerebellum and the left dorsolateral prefrontal cortex. In line with previous studies, a task-difficulty-dependent increase of left-hemispheric rCBF was also detected for the premotor cortex, cingulate, precuneus, and globus pallidus. These results imply consistency across the two neuroimaging modalities, particularly for the assessment of prefrontal brain function when using a parametric TOL adaptation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biological factors underlying individual variability in fearfulness and anxiety have important implications for stress-related psychiatric illness including PTSD and major depression. Using an advanced intercross line (AIL) derived from C57BL/6 and DBA/2J mouse strains and behavioral selection over 3 generations, we established two lines exhibiting High or Low fear behavior after fear conditioning. Across the selection generations, the two lines showed clear differences in training and tests for contextual and conditioned fear. Before fear conditioning training, there were no differences between lines in baseline freezing to a novel context. However, after fear conditioning High line mice demonstrated pronounced freezing in a new context suggestive of poor context discrimination. Fear generalization was not restricted to contextual fear. High fear mice froze to a novel acoustic stimulus while freezing in the Low line did not increase over baseline. Enhanced fear learning and generalization are consistent with transgenic and pharmacological disruption of the hypothalamic-pituitary-adrenal axis (HPA-axis) (Brinks, 2009, Thompson, 2004, Kaouane, 2012). To determine whether there were differences in HPA-axis regulation between the lines, morning urine samples were collected to measure basal corticosterone. Levels of secreted corticosterone in the circadian trough were analyzed by corticosterone ELISA. High fear mice were found to have higher basal corticosterone levels than low line animals. Examination of hormonal stress response components by qPCR revealed increased expression of CRH mRNA and decreased mRNA for MR and CRHR1 in hypothalamus of high fear mice. These alterations may contribute to both the behavioral phenotype and higher basal corticosterone in High fear mice. To determine basal brain activity in vivo in High and Low fear mice we used manganese-enhanced magnetic resonance imaging (MEMRI). Analysis revealed a pattern of basal brain activity made up of amygdala, cortical and hippocampal circuits that was elevated in the High line. Ongoing studies also seek to determine the relative balance of excitatory and inhibitory tone in the amygdala and hippocampus and the neuronal structure of its neurons. While these heterogeneous lines are selected on fear memory expression, HPA-axis alterations and differences in hippocampal activity segregate with the behavioral phenotypes. These differences are detectable in a basal state strongly suggesting these are biological traits underlying the behavioral phenotype (Johnson et al, 2011).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although key to understanding individual variation in task-related brain activation, the genetic contribution to these individual differences remains largely unknown. Here we report voxel-by-voxel genetic model fitting in a large sample of 319 healthy, young adult, human identical and fraternal twins (mean ± SD age, 23.6 ±1.8 years) who performed an n-back working memory task during functional magnetic resonance imaging (fMRI) at a high magnetic field (4 tesla). Patterns of task-related brain response (BOLD signal difference of 2-back minus 0-back) were significantly heritable, with the highest estimates (40 - 65%) in the inferior, middle, and superior frontal gyri, left supplementary motor area, precentral and postcentral gyri, middle cingulate cortex, superior medial gyrus, angular gyrus, superior parietal lobule, including precuneus, and superior occipital gyri. Furthermore, high test-retest reliability for a subsample of 40 twins indicates that nongenetic variance in the fMRI brain response is largely due to unique environmental influences rather than measurement error. Individual variations in activation of the working memory network are therefore significantly influenced by genetic factors. By establishing the heritability of cognitive brain function in a large sample that affords good statistical power, and using voxel-by-voxel analyses, this study provides the necessary evidence for task-related brain activation to be considered as an endophenotype for psychiatric or neurological disorders, and represents a substantial new contribution to the field of neuroimaging genetics. These genetic brain maps should facilitate discovery of gene variants influencing cognitive brain function through genome-wide association studies, potentially opening up new avenues in the treatment of brain disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The anterior temporal lobes (ATLs) have been proposed to serve as a "hub" linking amodal or domain general information about the meaning of words, objects, facts and people distributed throughout the brain in semantic memory. The two primary sources of evidence supporting this proposal, viz. structural imaging studies in semantic dementia (SD) patients and functional imaging investigations, are not without problems. Similarly, knowledge about the anatomo-functional connectivity of semantic memory is limited to a handful of intra-operative electrocortical stimulation (IES) investigations in patients. Here, using principal components analyses (PCA) of a battery of conceptual and non-conceptual tests coupled with voxel based morphometry (VBM) and diffusion tensor imaging (DTI) in a sample of healthy older adults aged 55-85. years, we show that amodal semantic memory relies on a predominantly left lateralised network of grey matter regions involving the ATL, posterior temporal and posterior inferior parietal lobes, with prominent involvement of the left inferior fronto-occipital fasciculus (IFOF) and uncinate fasciculus fibre pathways. These results demonstrate relationships between semantic memory, brain structure and connectivity essential for human communication and cognition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cerebral responses to alternating periods of a control task and a selective letter generation paradigm were investigated with functional Magnetic Resonance Imaging (fMRI). Subjects selectively generated letters from four designated sets of six letters from the English language alphabet, with the instruction that they were not to produce letters in alphabetical order either forward or backward, repeat or alternate letters. Performance during this condition was compared with that of a control condition in which subjects recited the same letters in alphabetical order. Analyses revealed significant and extensive foci of activation in a number of cerebral regions including mid-dorsolateral frontal cortex, inferior frontal gyrus, precuneus, supramarginal gyrus, and cerebellum during the selective letter generation condition. These findings are discussed with respect to recent positron emission tomography (PET) and fMRI studies of verbal working memory and encoding/retrieval in episodic memory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the design and implementation of a single shared bus, shared memory multiprocessing system using Intel's single board computers is presented. The hardware configuration and the operating system developed to execute the parallel algorithms are discussed. The performance evaluation studies carried out on Image are outlined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, effects of stimulus repetition and change in a continuous stimulus stream on the processing of somatosensory information in the human brain were studied. Human scalp-recorded somatosensory event-related potentials (ERPs) and magnetoencephalographic (MEG) responses rapidly diminished with stimulus repetition when mechanical or electric stimuli were applied to fingers. On the contrary, when the ERPs and multi-unit a ctivity (MUA) were directly recorded from the primary (SI) and secondary (SII) somatosensory cortices in a monkey, there was no marked decrement in the somatosensory responses as a function of stimulus repetition. These results suggest that this rate effect is not due to the response diminution in the SI and SII cortices. Obviously the responses to the first stimulus after a long "silent" period are nhanced due to unspecific initial orientation, originating in more broadly distributed and/or deeper neural structures, perhaps in the prefrontal cortices. With fast repetition rates not only the late unspecific but also some early specific somatosensory ERPs were diminished in amplitude. The fast decrease of the ERPs as a function of stimulus repetition is mainly due to the disappearance of the orientation effect and with faster repetition rates additively due to stimulus specific refractoriness. A sudden infrequent change in the continuous stimulus stream also enhanced somatosensory MEG responses to electric stimuli applied to different fingers. These responses were quite similar to those elicited by the deviant stimuli alone when the frequent standard stimuli were omitted. This enhancement was obviously due to the release from refractoriness because the neural structures generating the responses to the infrequent deviants had more time to recover from the refractoriness than the respective structures for the standards. Infrequent deviant mechanical stimuli among frequent standard stimuli also enhanced somatosensory ERPs and, in addition, they elicited a new negative wave which did not occur in the deviants-alone condition. This extra negativity could be recorded to deviations in the stimulation site and in the frequency of the vibratory stimuli. This response is probably a somatosensory analogue of the auditory mismatch negativity (MMN) which has been suggested to reflect a neural mismatch process between the sensory input and the sensory memory trace.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intact function of working memory (WM) is essential for children and adults to cope with every day life. Children with deficits in WM mechanisms have learning difficulties that are often accompanied by behavioral problems. The neural processes subserving WM, and brain structures underlying this system, continue to develop during childhood till adolescence and young adulthood. With functional magnetic resonance imaging (fMRI) it is possible to investigate the organization and development of WM. The present thesis aimed to investigate, using behavioral and neuroimaging methods, whether mnemonic processing of spatial and nonspatial visual information is segregated in the developing and mature human brain. A further aim in this research was to investigate the organization and development of audiospatial and visuospatial information processing in WM. The behavioral results showed that spatial and nonspatial visual WM processing is segregated in the adult brain. The fMRI result in children suggested that memory load related processing of spatial and nonspatial visual information engages common cortical networks, whereas selective attention to either type of stimuli recruits partially segregated areas in the frontal, parietal and occipital cortices. Deactivation mechanisms that are important in the performance of WM tasks in adults are already operational in healthy school-aged children. Electrophysiological evidence suggested segregated mnemonic processing of visual and auditory location information. The results of the development of audiospatial and visuospatial WM demonstrate that WM performance improves with age, suggesting functional maturation of underlying cognitive processes and brain areas. The development of the performance of spatial WM tasks follows a different time course in boys and girls indicating a larger degree of immaturity in the male than female WM systems. Furthermore, the differences in mastering auditory and visual WM tasks may indicate that visual WM reaches functional maturity earlier than the corresponding auditory system. Spatial WM deficits may underlie some learning difficulties and behavioral problems related to impulsivity, difficulties in concentration, and hyperactivity. Alternatively, anxiety or depressive symptoms may affect WM function and the ability to concentrate, being thus the primary cause of poor academic achievement in children.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microcommands constituting the microprogram of the control memory of a microprogrammed processor can be partitioned into a number of disjoint sets. Some of these sets are then encoded to minimize the word width of the ROM storing the microprogram. A further reduction in the width of the ROM words can be achieved by a technique known as bit steering where one or more bits are shared by two or more sets of microcommands. These sets are called the steerable sets. This correspondence presents a simple method for the detection and encoding of steerable sets. It has been shown that the concurrency matrix of two steerable sets exhibits definite patterns of clusters which can be easily recognized. A relation "connection" has been defined which helps in the detection of three-set steerability. Once steerable sets are identified, their encoding becomes a straightforward procedure following the location of the identifying clusters on the concurrency matrix or matrices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Opiod dependence is a chronic severe brain disorder associated with enormous health and social problems. The relapse back to opioid abuse is very high especially in early abstinence, but neuropsychological and neurophysiological deficits during opioid abuse or soon after cessation of opioids are scarcely investigated. Also the structural brain changes and their correlations with the length of opioid abuse or abuse onset age are not known. In this study the cognitive functions, neural basis of cognitive dysfunction, and brain structural changes was studied in opioid-dependent patients and in age and sex matched healthy controls. Materials and methods: All subjects participating in the study, 23 opioid dependents of whom, 15 were also benzodiazepine and five cannabis co-dependent and 18 healthy age and sex matched controls went through Structured Clinical Interviews (SCID) to obtain DSM-IV axis I and II diagnosis and to exclude psychiatric illness not related to opioid dependence or personality disorders. Simultaneous magnetoencephalography (MEG) and electroencephalography (EEG) measurements were done on 21 opioid-dependent individuals on the day of hospitalization for withdrawal therapy. The neural basis of auditory processing was studied and pre-attentive attention and sensory memory were investigated. During the withdrawal 15 opioid-dependent patients participated in neuropsychological tests, measuring fluid intelligence, attention and working memory, verbal and visual memory, and executive functions. Fifteen healthy subjects served as controls for the MEG-EEG measurements and neuropsychological assessment. The brain magnetic resonance imaging (MRI) was obtained from 17 patients after approximately two weeks abstinence, and from 17 controls. The areas of different brain structures and the absolute and relative volumes of cerebrum, cerebral white and gray matter, and cerebrospinal fluid (CSF) spaces were measured and the Sylvian fissure ratio (SFR) and bifrontal ratio were calculated. Also correlation between the cerebral measures and neuropsychological performance was done. Results: MEG-EEG measurements showed that compared to controls the opioid-dependent patients had delayed mismatch negativity (MMN) response to novel sounds in the EEG and P3am on the contralateral hemisphere to the stimulated ear in MEG. The equivalent current dipole (ECD) of N1m response was stronger in patients with benzodiazepine co-dependence than those without benzodiazepine co-dependence or controls. In early abstinence the opioid dependents performed poorer than the controls in tests measuring attention and working memory, executive function and fluid intelligence. Test results of the Culture Fair Intelligence Test (CFIT), testing fluid intelligence, and Paced Auditory Serial Addition Test (PASAT), measuring attention and working memory correlated positively with the days of abstinence. MRI measurements showed that the relative volume of CSF was significantly larger in opioid dependents, which could also be seen in visual analysis. Also Sylvian fissures, expressed by SFR were wider in patients, which correlated negatively with the age of opioid abuse onset. In controls the relative gray matter volume had a positive correlation with composite cognitive performance, but this correlation was not found in opioid dependents in early abstinence. Conclusions: Opioid dependents had wide Sylvian fissures and CSF spaces indicating frontotemporal atrophy. Dilatation of Sylvian fissures correlated with the abuse onset age. During early withdrawal cognitive performance of opioid dependents was impaired. While intoxicated the pre-attentive attention to novel stimulus was delayed and benzodiazepine co-dependence impaired sound detection. All these changes point to disturbances on frontotemporal areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"The functional organization of auditory cortex (AC) is still poorly understood. Previous studies suggest segregation of auditory processing streams for spatial and nonspatial information located in the posterior and anterior AC, respectively (Rauschecker and Tian, 2000; Arnott et al., 2004; Lomber and Malhotra, 2008). Furthermore, previous studies have shown that active listening tasks strongly modulate AC activations (Petkov et al., 2004; Fritz et al., 2005; Polley et al., 2006). However, the task dependence of AC activations has not been systematically investigated. In the present study, we applied high-resolution functional magnetic resonance imaging of the AC and adjacent areas to compare activations during pitch discrimination and n-back pitch memory tasks that were varied parametrically in difficulty. We found that anterior AC activations were increased during discrimination but not during memory tasks, while activations in the inferior parietal lobule posterior to the AC were enhanced during memory tasks but not during discrimination. We also found that wide areas of the anterior AC and anterior insula were strongly deactivated during the pitch memory tasks. While these results are consistent with the proposition that the anterior and posterior AC belong to functionally separate auditory processing streams, our results show that this division is present also between tasks using spatially invariant sounds. Together, our results indicate that activations of human AC are strongly dependent on the characteristics of the behavioral task."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have performed a series of magnetic aging experiments on single crystals of Dy0.5Sr0.5MnO3. The results demonstrate striking memory and chaos-like effects in this insulating half-doped perovskite manganite and suggest the existence of strong magnetic relaxation mechanisms of a clustered magnetic state. The spin-glass-like state established below a temperature T-sg approximate to 34 K originates from quenched disorder arising due to the ionic-radii mismatch at the rare earth site. However, deviations from the typical behavior seen in canonical spin glass materials are observed which indicate that the glassy magnetic properties are due to cooperative and frustrated dynamics in a heterogeneous or clustered magnetic state. In particular, the microscopic spin flip time obtained from dynamical scaling near the spin glass freezing temperature is four orders of magnitude larger than microscopic times found in atomic spin glasses. The magnetic viscosity deduced from the time dependence of the zero-field-cooled magnetization exhibits a peak at a temperature T < T-sg and displays a marked dependence on waiting time in zero field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an extensive study on magnetic and transport properties of La(0.85)Sr(0.15)CoO(3) single crystals grown by a float zone method to address the issue of phase separation versus spin-glass (SG) behavior. The dc magnetization study reveals a kink in field-cooled magnetization, and the peak in the zero-field-cooling curve shifts to lower temperature at modest dc fields, indicating the SG magnetic phase. The ac susceptibility study exhibits a considerable frequency-dependent peak shift (similar to 4 K) and a time-dependent memory effect below the freezing temperature. In addition, the characteristic time scale tau(0) estimated from the frequency-dependent ac susceptibility measurement is found to be similar to 10(-13) s, which matches well with typical values observed in canonical SG systems. The transport relaxation study evidently demonstrates the time-dependent glassy phenomena. In essence, all our experimental results corroborate the existence of SG behavior in La(0.85)Sr(0.15)CoO(3) single crystals.