946 resultados para Macrophage Inflammatory Protein-1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ticks are blood-feeding arthropods that secrete immunomodulatory molecules through their saliva to antagonize host inflammatory and immune responses. As dendritic cells (DCs) play a major role in host immune responses, we studied the effects of Rhipicephalus sanguineus tick saliva on DC migration and function. Bone marrow-derived immature DCs pre-exposed to tick saliva showed reduced migration towards macrophage inflammatory protein (MIP)-1 alpha, MIP-1 beta and regulated upon activation, normal T cell expressed and secreted (RANTES) chemokines in a Boyden microchamber assay. This inhibition was mediated by saliva which significantly reduced the percentage and the average cell-surface expression of CC chemokine receptor CCR5. In contrast, saliva did not alter migration of DCs towards MIP-3 beta, not even if the cells were induced for maturation. Next, we evaluated the effect of tick saliva on the activity of chemokines related to DC migration and showed that tick saliva per se inhibits the chemotactic function of MIP-1 alpha, while it did not affect RANTES, MIP-1 beta and MIP-3 beta. These data suggest that saliva possibly reduces immature DC migration, while mature DC chemotaxis remains unaffected. In support of this, we have analyzed the percentage of DCs on mice 48 h after intradermal inoculation with saliva and found that the DC turnover in the skin was reduced compared with controls. Finally, to test the biological activity of the saliva-exposed DCs, we transferred DCs pre-cultured with saliva and loaded with the keyhole limpet haemocyanin (KLH) antigen to mice and measured their capacity to induce specific T cell cytokines. Data showed that saliva reduced the synthesis of both T helper (Th)1 and Th2 cytokines, suggesting the induction of a non-polarised T cell response. These findings propose that the inhibition of DCs migratory ability and function may be a relevant mechanism used by ticks to subvert the immune response of the host. (c) 2007 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tuberculosis has great public health impact with high rates of mortality and the only prophylactic measure for it is the Mycobacterium bovisbacillus Calmette-Guérin (BCG) vaccine. The present study evaluated the release of cytokines [interleukin (IL)-1, tumour necrosis factor and IL-6] and chemokines [macrophage inflammatory protein (MIP)-1α and MIP-1β] by THP-1 derived macrophages infected with BCG vaccine obtained by growing mycobacteria in Viscondessa de Moraes Institute medium medium (oral) or Sauton medium (intradermic) to compare the effects of live and heat-killed (HK) mycobacteria. Because BCG has been reported to lose viability during the lyophilisation process and during storage, we examined whether exposing BCG to different temperatures also triggers differences in the expression of some important cytokines and chemokines of the immune response. Interestingly, we observed that HK mycobacteria stimulated cytokine and chemokine production in a different pattern from that observed with live mycobacteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Broad-spectrum inhibitors of HDACs are therapeutic in many inflammatory disease models but exacerbated disease in a mouse model of atherosclerosis. HDAC inhibitors have anti- and proinflammatory effects on macrophages in vitro. We report here that several broad-spectrum HDAC inhibitors, including TSA and SAHA, suppressed the LPS-induced mRNA expression of the proinflammatory mediators Edn-1, Ccl-7/MCP-3, and Il-12p40 but amplified the expression of the proatherogenic factors Cox-2 and Pai-1/serpine1 in primary mouse BMM. Similar effects were also apparent in LPS-stimulated TEPM and HMDM. The pro- and anti-inflammatory effects of TSA were separable over a concentration range, implying that individual HDACs have differential effects on macrophage inflammatory responses. The HDAC1-selective inhibitor, MS-275, retained proinflammatory effects (amplification of LPS-induced expression of Cox-2 and Pai-1 in BMM) but suppressed only some inflammatory responses. In contrast, 17a (a reportedly HDAC6-selective inhibitor) retained anti-inflammatory but not proinflammatory properties. Despite this, HDAC6(-/-) macrophages showed normal LPS-induced expression of HDAC-dependent inflammatory genes, arguing that the anti-inflammatory effects of 17a are not a result of inhibition of HDAC6 alone. Thus, 17a provides a tool to identify individual HDACs with proinflammatory properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: The molecular mechanisms of obesity-related insulin resistance are incompletely understood. Macrophages accumulate in adipose tissue of obese individuals. In obesity, monocyte chemoattractant protein-1 (MCP-1), a key chemokine in the process of macrophage accumulation, is overexpressed in adipose tissue. MCP-1 is an insulin-responsive gene that continues to respond to exogenous insulin in insulin-resistant adipocytes and mice. MCP-1 decreases insulin-stimulated glucose uptake into adipocytes. The A-2518G polymorphism in the distal regulatory region of MCP-1 may regulate gene expression. The aim of this study was to investigate the impact of this gene polymorphism on insulin resistance. METHODS: We genotyped the Ludwigshafen Risk and Cardiovascular Health (LURIC) cohort ( n=3307). Insulin resistance, estimated by homeostasis model assessment, and Type 2 diabetes were diagnosed in 803 and 635 patients respectively. RESULTS: Univariate analysis revealed that plasma MCP-1 levels were significantly and positively correlated with WHR ( p=0.011), insulin resistance ( p=0.0097) and diabetes ( p<0.0001). Presence of the MCP-1 G-2518 allele was associated with decreased plasma MCP-1 ( p=0.017), a decreased prevalence of insulin resistance (odds ratio [OR]=0.82, 95% CI: 0.70-0.97, p=0.021) and a decreased prevalence of diabetes (OR=0.80, 95% CI: 0.67-0.96, p=0.014). In multivariate analysis, the G allele retained statistical significance as a negative predictor of insulin resistance (OR=0.78, 95% CI: 0.65-0.93, p=0.0060) and diabetes (OR=0.80, 95% CI: 0.66-0.96, p=0.018). CONCLUSIONS/INTERPRETATION: In a large cohort of Caucasians, the MCP-1 G-2518 gene variant was significantly and negatively correlated with plasma MCP-1 levels and the prevalence of insulin resistance and Type 2 diabetes. These results add to recent evidence supporting a role for MCP-1 in pathologies associated with hyperinsulinaemia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Macrophage-mediated chronic inflammation is mechanistically linked to insulin resistance and atherosclerosis. Although arginase I is considered antiinflammatory, the role of arginase II (Arg-II) in macrophage function remains elusive. This study characterizes the role of Arg-II in macrophage inflammatory responses and its impact on obesity-linked type II diabetes mellitus and atherosclerosis. METHODS AND RESULTS: In human monocytes, silencing Arg-II decreases the monocytes' adhesion to endothelial cells and their production of proinflammatory mediators stimulated by oxidized low-density lipoprotein or lipopolysaccharides, as evaluated by real-time quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. Macrophages differentiated from bone marrow cells of Arg-II-deficient (Arg-II(-/-)) mice express lower levels of lipopolysaccharide-induced proinflammatory mediators than do macrophages of wild-type mice. Importantly, reintroducing Arg-II cDNA into Arg-II(-/-) macrophages restores the inflammatory responses, with concomitant enhancement of mitochondrial reactive oxygen species. Scavenging of reactive oxygen species by N-acetylcysteine prevents the Arg-II-mediated inflammatory responses. Moreover, high-fat diet-induced infiltration of macrophages in various organs and expression of proinflammatory cytokines in adipose tissue are blunted in Arg-II(-/-) mice. Accordingly, Arg-II(-/-) mice reveal lower fasting blood glucose and improved glucose tolerance and insulin sensitivity. Furthermore, apolipoprotein E (ApoE)-deficient mice with Arg-II deficiency (ApoE(-/-)Arg-II(-/-)) display reduced lesion size with characteristics of stable plaques, such as decreased macrophage inflammation and necrotic core. In vivo adoptive transfer experiments reveal that fewer donor ApoE(-/-)Arg-II(-/-) than ApoE(-/-)Arg-II(+/+) monocytes infiltrate into the plaque of ApoE(-/-)Arg-II(+/+) mice. Conversely, recipient ApoE(-/-)Arg-II(-/-) mice accumulate fewer donor monocytes than do recipient ApoE(-/-)Arg-II(+/+) animals. CONCLUSIONS: Arg-II promotes macrophage proinflammatory responses through mitochondrial reactive oxygen species, contributing to insulin resistance and atherogenesis. Targeting Arg-II represents a potential therapeutic strategy in type II diabetes mellitus and atherosclerosis. (J Am Heart Assoc. 2012;1:e000992 doi: 10.1161/JAHA.112.000992.).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The golden standard in nuclear medicine imaging of inflammation is the use of radiolabeled leukocytes. Although their diagnostic accuracy is good, the preparation of the leukocytes is both laborious and potentially hazardous for laboratory personnel. Molecules involved in leukocyte migration could serve as targets for the development of inflammation imaging agents. An excellent target would be a molecule that is absent or expressed at low level in normal tissues, but is induced or up-regulated at the site of inflammation. Vascular adhesion protein-1 (VAP-1) is a very promising target for in vivo imaging, since it is translocated to the endothelial cell surface when inflammation occurs. VAP-1 functions as an endothelial adhesion molecule that participates in leukocyte recruitment to inflamed tissues. Besides being an adhesion molecule, VAP-1 also has enzymatic activity. In this thesis, the targeting of VAP-1 was studied by using Gallium-68 (68Ga) labeled peptides and an Iodine-124 (124I) labeled antibody. The peptides were designed based on molecular modelling and phage display library searches. The new imaging agents were preclinically tested in vitro, as well as in vivo in animal models. The most promising imaging agent appeared to be a peptide belonging to the VAP-1 leukocyte ligand, Siglec-9 peptide. The 68Ga-labeled Siglec-9 peptide was able to detect VAP-1 positive vasculature in rodent models of sterile skin inflammation and melanoma by positron emission tomography. In addition to peptides, the 124I-labeled antibody showed VAP-1 specific binding both in vitro and in vivo. However, the estimated human radiation dose was rather high, and thus further preclinical studies in disease models are needed to clarify the value of this imaging agent. Detection of VAP-1 on endothelium was demonstrated in these studies and this imaging approach could be used in the diagnosis of inflammatory conditions as well as melanoma. These studies provide a proof-of-concept for PET imaging of VAP-1 and further studies are warranted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myocardial ischemic preconditioning upregulated protein 1 (Mipu1) is a newly discovered upregulated gene produced in rats during the myocardial ischemic preconditioning process. Mipu1 cDNA contains a 1824-base pair open reading frame and encodes a 608 amino acid protein with an N-terminal Krüppel-associated box (KRAB) domain and classical zinc finger C2H2 motifs in the C-terminus. Mipu1 protein is located in the cell nucleus. Recent studies found that Mipu1 has a protective effect on the ischemia-reperfusion injury of heart, brain, and other organs. As a nuclear factor, Mipu1 may perform its protective function through directly transcribing and repressing the expression of proapoptotic genes to repress cell apoptosis. In addition, Mipu1 also plays an important role in regulating the gene expression of downstream inflammatory mediators by inhibiting the activation of activator protein-1 and serum response element.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. In the present study, the role of macrophages and mast cells in mineral trioxide aggregate (MTA)-induced release of neutrophil chemotactic factor was investigated.Study design. MTA suspension (50 mg/mL) was plated over inserts on macrophages or mast cells for 90 minutes. Untreated cells served as controls. Cells were washed and cultured for 90 minutes in RPMI without the stimuli. Macrophages and mast cell supernatants were injected intraperitoneally (0.5 mL/cavity), and neutrophil migration was assessed 6 hours later. In some experiments, cells were incubated for 30 minutes with dexamethasone (DEX, 10 mu M/well), BWA4C (BW, 100 mu M/well) or U75302 (U75, 10 mu M/well). The concentration of Leukotriene B-4 (LTB4) in the cell-free supernatant from mast cells and macrophage culture was measured by ELISA.Results. Supernatants from MTA-stimulated macrophages and mast cells caused neutrophil migration. The release of neutrophil chemotactic factor by macrophages and mast cells was significantly inhibited by DEX, BW, or U75. Macrophages and mast cells expressed mRNA for interleukin-1 (IL-1)beta and macrophage inflammatory protein-2 (MIP-2) and the pretreatment of macrophages and mast cells with DEX, BW, or U75 significantly altered IL-1 beta and MIP-2 mRNA expression. LTB4 was detected in the MTA-stimulated macrophage supernatant but not mast cells.Conclusions. MTA-induces the release of neutrophil chemotactic factor substances from macrophages and mast cells with participation of IL-1 beta, MIP-2, and LTB4. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 109: e135-e142)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The aim of this study was to evaluate the expression of the protein annexin A1 (ANXA1), a potent endogenous regulator of the inflammatory process, in ocular toxoplasmosis. Methods: C57BL/6 female mice were infected using intravitreal injections of either 10 6 tachyzoites of Toxoplasma gondii (RH strain; T. gondii) or PBS only (control groups). After 24, 48, and 72 h, animals were sacrificed and their eyes were harvested for histopathological, immunohistochemical, and ultrastructural immunocytochemical analysis of ANXA1. Human retinal pigment epithelial (RPE) cells (ARPE-19) were infected in vitro with T. gondii and collected after 60, 120, 240 min, and 24 h. Results: Compared with non-infected eyes, an intense inflammatory response was observed in the anterior (24 h after infection) and posterior segments (72 h after infection) of the infected eye, characterized by neutrophil infiltration and by the presence of tachyzoites and their consequent destruction along with disorganization of normal retina architecture and RPE vacuolization. T. gondii infection was associated with a significant increase of ANXA1 expression in the neutrophils at 24, 48, and 72 h, and in the RPE at 48 and 72 h. In vitro studies confirmed an upregulation of ANXA1 levels in RPE cells, after 60 and 120 min of infection with T. gondii. Conclusions: The positive modulation of endogenous ANXA1 in the inflammatory and RPE cells during T. gondii infection suggests that this protein may serve as a therapeutic target in ocular toxoplasmosis. © 2012 Molecular Vision.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transcription factor B lymphocyte induced maturation protein-1 (Blimp-1) plays important roles in embryonic development and immunity. Blimp-1 is required for the differentiation of plasma cells, and mice with T cell specific deletion of Blimp-1 (Blimp-1CKO mice) develop a fatal inflammatory response in the colon. Previous work demonstrated that lack of Blimp-1 in CD4(+) and CD8(+) T cells leads to intrinsic functional defects, but little is known about the functional role of Blimp-1 in regulating differentiation of Th cells in vivo and their contribution to the chronic intestinal inflammation observed in the Blimp1CKO mice. In this study, we show that Blimp-1 is required to restrain the production of the inflammatory cytokine IL-17 by Th cells in vivo. Blimp-1CKO mice have greater numbers of IL-17 producing TCR beta(+)CD4(+)cells in lymphoid organs and in the intestinal mucosa. The increase in IL-17 producing cells was not restored to normal levels in wild-type and Blimp-1CKO mixed bone marrow chimeric mice, suggesting an intrinsic role for Blimp-1 in constraining the production of IL-17 in vivo. The observation that Blimp-1 deficient CD4(+) T cells are more prone to differentiate into IL-17(+)/IFN-gamma(+) cells and cause severe colitis when transferred to Rag1-deficient mice provides further evidence that Blimp-1 represses IL-17 production. Analysis of Blimp-1 expression at the single cell level during Th differentiation reveals that Blimp-1 expression is induced in Th1 and Th2 but repressed by TGF-beta in Th17 cells. Collectively, the results described here establish a new role for Blimp-1 in regulating IL-17 production in vivo. The Journal of Immunology, 2012,189: 5682-5693.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of oral ingestion of oleic (OLA) and linoleic (LNA) acids on wound healing in rats were investigated. LNA increased the influx of inflammatory cells, the concentration of hydrogen peroxide (H(2)O(2)) and cytokine-induced neutrophil chemoattractant-2 alpha beta (CINC-2 alpha beta), and the activation of the transcription factor activator protein-1 (AP-1) in the wound at 1 hour post wounding. LNA decreased the number of inflammatory cells and IL-1, IL-6, and macrophage inflammatory protein-3 (MIP-3) concentrations, as well as NF-kappa B activation in the wound at 24 hours post wounding. LNA accelerated wound closure over a period of 7 days. OLA increased TNF-alpha concentration and NF-kappa B activation at 1 hour post wounding. A reduction of IL-1, IL-6, and MIP-3 alpha concentrations, as well as NF-kappa B activation, was observed 24 hours post wounding in the OLA group. These data suggest that OLA and LNA accelerate the inflammatory phase of wound healing, but that they achieve this through different mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-alcoholic fatty liver disease (NAFLD) is strongly associated with obesity and the metabolic syndrome. It encompasses a clinico-pathologic spectrum of conditions ranging from simple steatosis to nonalcoholic steatohepatitis (NASH). The latter develops upon pro-inflammatory cell infiltration and is widely considered as the first relevant pathophysiological step in NAFLD-progression. The chemokine monocyte chemoattractant protein 1 (MCP-1) plays an important role in the progression of hepatic inflammation and fibrosis, and both increased hepatic expression and circulating serum levels have been described in NASH. Here, we aimed to investigate MCP-1 expression in simple hepatic steatosis. Upon feeding a high-fat diet mice developed hepatic steatosis in the absence of significant hepatic inflammation, but elevated hepatic MCP-1 expression compared to control mice fed a standard chow. Interestingly, high-fat diet fed mice had significantly higher MCP-1 serum levels, and MCP-1 mRNA expression was significantly increased in visceral adipose tissue. Furthermore, MCP-1 serum levels were also elevated in patients with ultrasound-diagnosed NAFLD and correlated with the body-mass index and fasting glucose. In conclusion, our data indicate both the liver and adipose tissue as cellular sources of elevated circulating MCP-1 levels already in the early phase of hepatic steatosis. Since MCP-1 derived from visceral adipose tissue reaches the liver via portal circulation at high concentrations it may significantly contribute to the progression of simple steatosis to NASH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Macrophage-mediated chronic inflammation is mechanistically linked to insulin resistance and atherosclerosis. Although arginase I is considered antiinflammatory, the role of arginase II (Arg-II) in macrophage function remains elusive. This study characterizes the role of Arg-II in macrophage inflammatory responses and its impact on obesity-linked type II diabetes mellitus and atherosclerosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND/OBJECTIVES High intake of added sweeteners is considered to have a causal role in the pathogenesis of cardiometabolic disorders. Especially, high-fructose intake is regarded as potentially harmful to cardiometabolic health. It may cause not only weight gain but also low-grade inflammation, which represents an independent risk factor for developing type 2 diabetes and cardiovascular disease. In particular, fructose has been suggested to induce plasminogen activator inhibitor-1 (PAI-1) expression in the liver and to increase circulating inflammatory cytokines. We therefore aimed to investigate, whether high-fructose diet has an impact on PAI-1, monocyte chemoattractant protein-1 (MCP-1), e-selectin and C-reactive protein (CRP) concentrations in healthy humans. SUBJECTS/METHODS We studied 20 participants (12 males and 8 females) of the TUebingen FRuctose Or Glucose study. This is an exploratory, parallel, prospective, randomized, single-blinded, outpatient, hypercaloric, intervention study. The participants had a mean age of 30.9 ± 2.1 years and a mean body mass index of 26.0 ± 0.5 kg/m(2) and they received 150 g of either fructose or glucose per day for 4 weeks.Results:There were neither significant changes of PAI-1, MCP-1, e-selectin and CRP after fructose (n=10) and glucose (n=10) intervention nor treatment effects (all P>0.2). Moreover, we did not observe longitudinal associations of the inflammatory parameters with triglycerides, liver fat, visceral fat and body weight in the fructose group. CONCLUSIONS Temporary high-fructose intake does not seem to cause inflammation in apparently healthy people in this secondary analysis of a small feeding trial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many viruses have evolved mechanisms for evading the host immune system by synthesizing proteins that interfere with the normal immune response. The poxviruses are among the most accomplished at deceiving their hosts’ immune systems. The nucleotide sequence of the genome of the human cutaneous poxvirus, molluscum contagiosum virus (MCV) type 1, was recently reported to contain a region that resembles a human chemokine. We have cloned and expressed the chemokine-like genes from MCV type 1 and the closely related MCV type 2 to determine a potential role for these proteins in the viral life cycle. In monocyte chemotaxis assays, the viral proteins have no chemotactic activity but both viral proteins block the chemotactic response to the human chemokine, macrophage inflammatory protein (MIP)-1α. Like MIP-1α, both viral proteins also inhibit the growth of human hematopoietic progenitor cells, but the viral proteins are more potent in this activity than the human chemokine. These viral chemokines antagonize the chemotactic activity of human chemokines and have an inhibitory effect on human hematopoietic progenitor cells. We hypothesize that the inhibition of chemotaxis is an immune evasion function of these proteins during molluscum contagiosum virus infection. The significance of hematopoietic progenitor cell inhibition in viral pathogenesis is uncertain.