809 resultados para Machine learning classification
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
We present the results of applying automated machine learning techniques to the problem of matching different object catalogues in astrophysics. In this study, we take two partially matched catalogues where one of the two catalogues has a large positional uncertainty. The two catalogues we used here were taken from the H I Parkes All Sky Survey (HIPASS) and SuperCOSMOS optical survey. Previous work had matched 44 per cent (1887 objects) of HIPASS to the SuperCOSMOS catalogue. A supervised learning algorithm was then applied to construct a model of the matched portion of our catalogue. Validation of the model shows that we achieved a good classification performance (99.12 per cent correct). Applying this model to the unmatched portion of the catalogue found 1209 new matches. This increases the catalogue size from 1887 matched objects to 3096. The combination of these procedures yields a catalogue that is 72 per cent matched.
Resumo:
An emerging issue in the field of astronomy is the integration, management and utilization of databases from around the world to facilitate scientific discovery. In this paper, we investigate application of the machine learning techniques of support vector machines and neural networks to the problem of amalgamating catalogues of galaxies as objects from two disparate data sources: radio and optical. Formulating this as a classification problem presents several challenges, including dealing with a highly unbalanced data set. Unlike the conventional approach to the problem (which is based on a likelihood ratio) machine learning does not require density estimation and is shown here to provide a significant improvement in performance. We also report some experiments that explore the importance of the radio and optical data features for the matching problem.
Resumo:
The purpose of this work in progress study was to test the concept of recognising plants using images acquired by image sensors in a controlled noise-free environment. The presence of vegetation on railway trackbeds and embankments presents potential problems. Woody plants (e.g. Scots pine, Norway spruce and birch) often establish themselves on railway trackbeds. This may cause problems because legal herbicides are not effective in controlling them; this is particularly the case for conifers. Thus, if maintenance administrators knew the spatial position of plants along the railway system, it may be feasible to mechanically harvest them. Primary data were collected outdoors comprising around 700 leaves and conifer seedlings from 11 species. These were then photographed in a laboratory environment. In order to classify the species in the acquired image set, a machine learning approach known as Bag-of-Features (BoF) was chosen. Irrespective of the chosen type of feature extraction and classifier, the ability to classify a previously unseen plant correctly was greater than 85%. The maintenance planning of vegetation control could be improved if plants were recognised and localised. It may be feasible to mechanically harvest them (in particular, woody plants). In addition, listed endangered species growing on the trackbeds can be avoided. Both cases are likely to reduce the amount of herbicides, which often is in the interest of public opinion. Bearing in mind that natural objects like plants are often more heterogeneous within their own class rather than outside it, the results do indeed present a stable classification performance, which is a sound prerequisite in order to later take the next step to include a natural background. Where relevant, species can also be listed under the Endangered Species Act.
Resumo:
The aim of this thesis project is to automatically localize HCC tumors in the human liver and subsequently predict if the tumor will undergo microvascular infiltration (MVI), the initial stage of metastasis development. The input data for the work have been partially supplied by Sant'Orsola Hospital and partially downloaded from online medical databases. Two Unet models have been implemented for the automatic segmentation of the livers and the HCC malignancies within it. The segmentation models have been evaluated with the Intersection-over-Union and the Dice Coefficient metrics. The outcomes obtained for the liver automatic segmentation are quite good (IOU = 0.82; DC = 0.35); the outcomes obtained for the tumor automatic segmentation (IOU = 0.35; DC = 0.46) are, instead, affected by some limitations: it can be state that the algorithm is almost always able to detect the location of the tumor, but it tends to underestimate its dimensions. The purpose is to achieve the CT images of the HCC tumors, necessary for features extraction. The 14 Haralick features calculated from the 3D-GLCM, the 120 Radiomic features and the patients' clinical information are collected to build a dataset of 153 features. Now, the goal is to build a model able to discriminate, based on the features given, the tumors that will undergo MVI and those that will not. This task can be seen as a classification problem: each tumor needs to be classified either as “MVI positive” or “MVI negative”. Techniques for features selection are implemented to identify the most descriptive features for the problem at hand and then, a set of classification models are trained and compared. Among all, the models with the best performances (around 80-84% ± 8-15%) result to be the XGBoost Classifier, the SDG Classifier and the Logist Regression models (without penalization and with Lasso, Ridge or Elastic Net penalization).
Resumo:
The advent of omic data production has opened many new perspectives in the quest for modelling complexity in biophysical systems. With the capability of characterizing a complex organism through the patterns of its molecular states, observed at different levels through various omics, a new paradigm of investigation is arising. In this thesis, we investigate the links between perturbations of the human organism, described as the ensemble of crosstalk of its molecular states, and health. Machine learning plays a key role within this picture, both in omic data analysis and model building. We propose and discuss different frameworks developed by the author using machine learning for data reduction, integration, projection on latent features, pattern analysis, classification and clustering of omic data, with a focus on 1H NMR metabolomic spectral data. The aim is to link different levels of omic observations of molecular states, from nanoscale to macroscale, to study perturbations such as diseases and diet interpreted as changes in molecular patterns. The first part of this work focuses on the fingerprinting of diseases, linking cellular and systemic metabolomics with genomic to asses and predict the downstream of perturbations all the way down to the enzymatic network. The second part is a set of frameworks and models, developed with 1H NMR metabolomic at its core, to study the exposure of the human organism to diet and food intake in its full complexity, from epidemiological data analysis to molecular characterization of food structure.
Resumo:
Machine (and deep) learning technologies are more and more present in several fields. It is undeniable that many aspects of our society are empowered by such technologies: web searches, content filtering on social networks, recommendations on e-commerce websites, mobile applications, etc., in addition to academic research. Moreover, mobile devices and internet sites, e.g., social networks, support the collection and sharing of information in real time. The pervasive deployment of the aforementioned technological instruments, both hardware and software, has led to the production of huge amounts of data. Such data has become more and more unmanageable, posing challenges to conventional computing platforms, and paving the way to the development and widespread use of the machine and deep learning. Nevertheless, machine learning is not only a technology. Given a task, machine learning is a way of proceeding (a way of thinking), and as such can be approached from different perspectives (points of view). This, in particular, will be the focus of this research. The entire work concentrates on machine learning, starting from different sources of data, e.g., signals and images, applied to different domains, e.g., Sport Science and Social History, and analyzed from different perspectives: from a non-data scientist point of view through tools and platforms; setting a problem stage from scratch; implementing an effective application for classification tasks; improving user interface experience through Data Visualization and eXtended Reality. In essence, not only in a quantitative task, not only in a scientific environment, and not only from a data-scientist perspective, machine (and deep) learning can do the difference.
Resumo:
Day by day, machine learning is changing our lives in ways we could not have imagined just 5 years ago. ML expertise is more and more requested and needed, though just a limited number of ML engineers are available on the job market, and their knowledge is always limited by an inherent characteristic of theirs: they are humans. This thesis explores the possibilities offered by meta-learning, a new field in ML that takes learning a level higher: models are trained on other models' training data, starting from features of the dataset they were trained on, inference times, obtained performances, to try to understand the relationship between a good model and the way it was obtained. The so-called metamodel was trained on data collected by OpenML, the largest ML metadata platform that's publicly available today. Datasets were analyzed to obtain meta-features that describe them, which were then tied to model performances in a regression task. The obtained metamodel predicts the expected performances of a given model type (e.g., a random forest) on a given ML task (e.g., classification on the UCI census dataset). This research was then integrated into a custom-made AutoML framework, to show how meta-learning is not an end in itself, but it can be used to further progress our ML research. Encoding ML engineering expertise in a model allows better, faster, and more impactful ML applications across the whole world, while reducing the cost that is inevitably tied to human engineers.
Resumo:
The emissions estimation, both during homologation and standard driving, is one of the new challenges that automotive industries have to face. The new European and American regulation will allow a lower and lower quantity of Carbon Monoxide emission and will require that all the vehicles have to be able to monitor their own pollutants production. Since numerical models are too computationally expensive and approximated, new solutions based on Machine Learning are replacing standard techniques. In this project we considered a real V12 Internal Combustion Engine to propose a novel approach pushing Random Forests to generate meaningful prediction also in extreme cases (extrapolation, very high frequency peaks, noisy instrumentation etc.). The present work proposes also a data preprocessing pipeline for strongly unbalanced datasets and a reinterpretation of the regression problem as a classification problem in a logarithmic quantized domain. Results have been evaluated for two different models representing a pure interpolation scenario (more standard) and an extrapolation scenario, to test the out of bounds robustness of the model. The employed metrics take into account different aspects which can affect the homologation procedure, so the final analysis will focus on combining all the specific performances together to obtain the overall conclusions.
Resumo:
There is not a specific test to diagnose Alzheimer`s disease (AD). Its diagnosis should be based upon clinical history, neuropsychological and laboratory tests, neuroimaging and electroencephalography (EEG). Therefore, new approaches are necessary to enable earlier and more accurate diagnosis and to follow treatment results. In this study we used a Machine Learning (ML) technique, named Support Vector Machine (SVM), to search patterns in EEG epochs to differentiate AD patients from controls. As a result, we developed a quantitative EEG (qEEG) processing method for automatic differentiation of patients with AD from normal individuals, as a complement to the diagnosis of probable dementia. We studied EEGs from 19 normal subjects (14 females/5 males, mean age 71.6 years) and 16 probable mild to moderate symptoms AD patients (14 females/2 males, mean age 73.4 years. The results obtained from analysis of EEG epochs were accuracy 79.9% and sensitivity 83.2%. The analysis considering the diagnosis of each individual patient reached 87.0% accuracy and 91.7% sensitivity.
Resumo:
Introduction: A major focus of data mining process - especially machine learning researches - is to automatically learn to recognize complex patterns and help to take the adequate decisions strictly based on the acquired data. Since imaging techniques like MPI – Myocardial Perfusion Imaging on Nuclear Cardiology, can implicate a huge part of the daily workflow and generate gigabytes of data, there could be advantages on Computerized Analysis of data over Human Analysis: shorter time, homogeneity and consistency, automatic recording of analysis results, relatively inexpensive, etc.Objectives: The aim of this study relates with the evaluation of the efficacy of this methodology on the evaluation of MPI Stress studies and the process of decision taking concerning the continuation – or not – of the evaluation of each patient. It has been pursued has an objective to automatically classify a patient test in one of three groups: “Positive”, “Negative” and “Indeterminate”. “Positive” would directly follow to the Rest test part of the exam, the “Negative” would be directly exempted from continuation and only the “Indeterminate” group would deserve the clinician analysis, so allowing economy of clinician’s effort, increasing workflow fluidity at the technologist’s level and probably sparing time to patients. Methods: WEKA v3.6.2 open source software was used to make a comparative analysis of three WEKA algorithms (“OneR”, “J48” and “Naïve Bayes”) - on a retrospective study using the comparison with correspondent clinical results as reference, signed by nuclear cardiologist experts - on “SPECT Heart Dataset”, available on University of California – Irvine, at the Machine Learning Repository. For evaluation purposes, criteria as “Precision”, “Incorrectly Classified Instances” and “Receiver Operating Characteristics (ROC) Areas” were considered. Results: The interpretation of the data suggests that the Naïve Bayes algorithm has the best performance among the three previously selected algorithms. Conclusions: It is believed - and apparently supported by the findings - that machine learning algorithms could significantly assist, at an intermediary level, on the analysis of scintigraphic data obtained on MPI, namely after Stress acquisition, so eventually increasing efficiency of the entire system and potentially easing both roles of Technologists and Nuclear Cardiologists. In the actual continuation of this study, it is planned to use more patient information and significantly increase the population under study, in order to allow improving system accuracy.
Resumo:
Sendo uma forma natural de interação homem-máquina, o reconhecimento de gestos implica uma forte componente de investigação em áreas como a visão por computador e a aprendizagem computacional. O reconhecimento gestual é uma área com aplicações muito diversas, fornecendo aos utilizadores uma forma mais natural e mais simples de comunicar com sistemas baseados em computador, sem a necessidade de utilização de dispositivos extras. Assim, o objectivo principal da investigação na área de reconhecimento de gestos aplicada à interacção homemmáquina é o da criação de sistemas, que possam identificar gestos específicos e usálos para transmitir informações ou para controlar dispositivos. Para isso as interfaces baseados em visão para o reconhecimento de gestos, necessitam de detectar a mão de forma rápida e robusta e de serem capazes de efetuar o reconhecimento de gestos em tempo real. Hoje em dia, os sistemas de reconhecimento de gestos baseados em visão são capazes de trabalhar com soluções específicas, construídos para resolver um determinado problema e configurados para trabalhar de uma forma particular. Este projeto de investigação estudou e implementou soluções, suficientemente genéricas, com o recurso a algoritmos de aprendizagem computacional, permitindo a sua aplicação num conjunto alargado de sistemas de interface homem-máquina, para reconhecimento de gestos em tempo real. A solução proposta, Gesture Learning Module Architecture (GeLMA), permite de forma simples definir um conjunto de comandos que pode ser baseado em gestos estáticos e dinâmicos e que pode ser facilmente integrado e configurado para ser utilizado numa série de aplicações. É um sistema de baixo custo e fácil de treinar e usar, e uma vez que é construído unicamente com bibliotecas de código. As experiências realizadas permitiram mostrar que o sistema atingiu uma precisão de 99,2% em termos de reconhecimento de gestos estáticos e uma precisão média de 93,7% em termos de reconhecimento de gestos dinâmicos. Para validar a solução proposta, foram implementados dois sistemas completos. O primeiro é um sistema em tempo real capaz de ajudar um árbitro a arbitrar um jogo de futebol robótico. A solução proposta combina um sistema de reconhecimento de gestos baseada em visão com a definição de uma linguagem formal, o CommLang Referee, à qual demos a designação de Referee Command Language Interface System (ReCLIS). O sistema identifica os comandos baseados num conjunto de gestos estáticos e dinâmicos executados pelo árbitro, sendo este posteriormente enviado para um interface de computador que transmite a respectiva informação para os robôs. O segundo é um sistema em tempo real capaz de interpretar um subconjunto da Linguagem Gestual Portuguesa. As experiências demonstraram que o sistema foi capaz de reconhecer as vogais em tempo real de forma fiável. Embora a solução implementada apenas tenha sido treinada para reconhecer as cinco vogais, o sistema é facilmente extensível para reconhecer o resto do alfabeto. As experiências também permitiram mostrar que a base dos sistemas de interação baseados em visão pode ser a mesma para todas as aplicações e, deste modo facilitar a sua implementação. A solução proposta tem ainda a vantagem de ser suficientemente genérica e uma base sólida para o desenvolvimento de sistemas baseados em reconhecimento gestual que podem ser facilmente integrados com qualquer aplicação de interface homem-máquina. A linguagem formal de definição da interface pode ser redefinida e o sistema pode ser facilmente configurado e treinado com um conjunto de gestos diferentes de forma a serem integrados na solução final.