973 resultados para MYCOBACTERIUM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two methionyl-transfer RNA synthetases (A and B forms) have been isolated from Image . The homogeneous preparations of the enzymes showed 1500 fold increase in specific activity in aminoacylation of methionine specific tRNA. The A and B forms differed in their specificity of aminoacylation of tRNAmMet and tRNAfMet; enzyme B exhibited much higher specificity for tRNAfMet. The molecular activities of A and B enzymes for aminoacid and tRNA were identical. The turnover number for aminoacid was 27 fold greater than that for tRNA, while the Km values for tRNA were lower by a factor of 106 as compared to the aminoacid. Both the enzymes catalysed ATP-pyrophosphate exchange reaction to the same extent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two methods were employed to measure the rate of ribonucleic acid (RNA) chain growth in vivo in Mycobacterium tuberculosis H37Rv cultures growing in Sauton medium at 37 degrees C, with a generation time of 10 h. In the first, the bacteria were allowed to assimilate [3H]uracil or [3H]guanine into their RNA for short time periods. The RNA was then extracted and hydrolyzed with alkali, and the radioactivity in the resulting nucleotides and nucleosides was measured. The data obtained by this method allowed the calculation of the individual nucleotide step times during the growth of RNA chains, from which the average rate of RNA chain elongation was estimated to be about 4 nucleotides per s. The second method employed the antibiotic rifampin, which specifically inhibits the initiation of RNA synthesis without interfering with the elongation and completion of nascent RNA chains. Usint this method, the transcription time of the 16S, 23S, and 5S ribosomal RNA genes was estimated to be 7.6 min, which corresponds to a ribosomal RNA chain growth rate of 10 nucleotides per s.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The Mycobacterium leprae genome has less than 50% coding capacity and 1,133 pseudogenes. Preliminary evidence suggests that some pseudogenes are expressed. Therefore, defining pseudogene transcriptional and translational potentials of this genome should increase our understanding of their impact on M. leprae physiology. Results: Gene expression analysis identified transcripts from 49% of all M. leprae genes including 57% of all ORFs and 43% of all pseudogenes in the genome. Transcribed pseudogenes were randomly distributed throughout the chromosome. Factors resulting in pseudogene transcription included: 1) co-orientation of transcribed pseudogenes with transcribed ORFs within or exclusive of operon-like structures; 2) the paucity of intrinsic stem-loop transcriptional terminators between transcribed ORFs and downstream pseudogenes; and 3) predicted pseudogene promoters. Mechanisms for translational ``silencing'' of pseudogene transcripts included the lack of both translational start codons and strong Shine-Dalgarno (SD) sequences. Transcribed pseudogenes also contained multiple ``in-frame'' stop codons and high Ka/Ks ratios, compared to that of homologs in M. tuberculosis and ORFs in M. leprae. A pseudogene transcript containing an active promoter, strong SD site, a start codon, but containing two in frame stop codons yielded a protein product when expressed in E. coli. Conclusion: Approximately half of M. leprae's transcriptome consists of inactive gene products consuming energy and resources without potential benefit to M. leprae. Presently it is unclear what additional detrimental affect(s) this large number of inactive mRNAs has on the functional capability of this organism. Translation of these pseudogenes may play an important role in overall energy consumption and resultant pathophysiological characteristics of M. leprae. However, this study also demonstrated that multiple translational ``silencing'' mechanisms are present, reducing additional energy and resource expenditure required for protein production from the vast majority of these transcripts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antitubercular treatment is directed against actively replicating organisms. There is an urgent need to develop drugs targeting persistent subpopulations of Mycobacterium tuberculosis. The DevR response regulator is believed to play a key role in bacterial dormancy adaptation during hypoxia. We developed a homology-based model of DevR and used it for the rational design of inhibitors. A phenylcoumarin derivative (compound 10) identified by in silico pharmacophore-based screening of 2.5 million compounds employing protocols with some novel features including a water-based pharmacophore query, was characterized further. Compound 10 inhibited DevR binding to target DNA, down-regulated dormancy genes transcription, and drastically reduced survival of hypoxic but not nutrient-starved dormant bacteria or actively growing organ ` isms. Our findings suggest that compound 10 ``locks'' DevR in an inactive conformation that is unable to bind cognate DNA and induce the dormancy regulon. These results provide proof-of-concept for DevR as a novel target to develop molecules with sterilizing activity against tubercle bacilli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycobacterium smegmatis topoisomerase I (Mstopol) is distinct from typical type IA topoisomerases. The enzyme binds to both single- and double-stranded DNA with high affinity, making specific contacts. The enzyme comprises conserved regions similar to type IA topoisomerases from Escherichia coli and other eubacteria but lacks the typically found zinc fingers in the carboxy-terminal domain. The enzyme can perform DNA cleavage m the absence of Mg2+ but religation needs exogenously added Mg2+. One molecule of Mg2+ tightly bound to the enzyme has no role in DNA cleavage but is needed only for the religation reaction. The toprim. (topoisomerase-primase) domain in MstopoI comprising the Mg2+ binding pocket, conserved in both type IA and type II topoisomerases, was subjected to mutagenesis to understand the role of Mg2+, in different steps of the reaction. The residues D108, D110, and E112 of the enzyme, which form the acidic triad in the DXDXE motif, were changed to alanines. D108A mutation resulted in an enzyme that is Mg2+ dependent for DNA cleavage unlike Mstopol and exhibited enhanced DNA cleavage property and reduced religation activity. The mutant was toxic for cell growth, most likely due to the imbalance in cleavage-religation equilibrium. In contrast, the E112A mutant behaved like wild-type enzyme, cleaving DNA in a Mg2+-independent fashion, albeit to a reduced extent. Intra- and intermolecular religation assays indicated specific roles for D108 and E112 residues during the reaction. Together, these results indicate that the D108 residue has a major role during cleavage and religation, while E112 is important for enhancing the efficiency of cleavage. Thus, although architecturally and mechanistically similar to topoisomerase I from E. coli, the metal coordination pattern of the mycobacterial enzyme is distinct, opening up avenues to exploit the enzyme to develop inhibitors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tuberculosis continues to be a major health challenge, warranting the need for newer strategies for therapeutic intervention and newer approaches to discover them. Here, we report the identification of efficient metabolism disruption strategies by analysis of a reactome network. Protein-protein dependencies at a genome scale are derived from the curated metabolic network, from which insights into the nature and extent of inter-protein and inter-pathway dependencies have been obtained. A functional distance matrix and a subsequent nearness index derived from this information, helps in understanding how the influence of a given protein can pervade to the metabolic network. Thus, the nearness index can be viewed as a metabolic disruptability index, which suggests possible strategies for achieving maximal metabolic disruption by inhibition of the least number of proteins. A greedy approach has been used to identify the most influential singleton, and its combination with the other most pervasive proteins to obtain highly influential pairs, triplets and quadruplets. The effect of deletion of these combinations on cellular metabolism has been studied by flux balance analysis. An obvious outcome of this study is a rational identification of drug targets, to efficiently bring down mycobacterial metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recA locus of pathogenic mycobacteria differs from that of nonpathogenic species because it contains large intervening sequences nested in the RecA homology region that are excised by an unusual protein-splicing reaction. In vivo assays indicated that Mycobacterium tuberculosis recA partially complemented Escherichia coli recA mutants for recombination and mutagenesis. Further, splicing of the 85 kDa precursor to 38 kDa MtRecA protein was necessary for the display of its activity, in vivo. To gain insights into the molecular basis for partial and lack of complementation by MtRecA and 85 kDa proteins, respectively, we purified both of them to homogeneity. MtRecA protein, but not the 85 kDa form, bound stoichiometrically to single-stranded DNA in the presence of ATP. MtRecA protein was cross-linked to 8-azidoadenosine 5'-triphosphate with reduced efficiency, and kinetic analysis of ATPase activity suggested that it is due to decreased affinity for ATP. In contrast, the 85 kDa form was unable to bind ATP, in the presence or absence of ssDNA and, consequently, was entirely devoid of ATPase activity. Molecular modeling studies suggested that the decreased affinity of MtRecA protein for ATP and the reduced efficiency of its hydrolysis might be due to the widening of the cleft which alters the hydrogen bonds and the contact area between the enzyme and the substrate and changes in the disposition of the amino acid residues around the magnesium ion and the gamma-phosphate. The formation of joint molecules promoted by MtRecA protein was stimulated by SSB when the former was added first. The probability of an association between the lack and partial levels of biological activity of RecA protein(s) to that of illegitimate recombination in pathogenic mycobacteria is considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The translation elongation factor G (EFG) is encoded by the fusA gene.Several bacteria possess a second fusA-like locus,fusA2 which encodes EFG2. A comparison of EFG and EFG2 from various bacteria reveals that EFG2 preserves domain organization and maintains significant sequence homology with EFG, suggesting that EFG2 may function as an elongation factor. However, with the single exception of a recent study on Thermus thermophilus EFG2, this class of EFG-like factors has not been investigated. Here, we have characterized EFG2 (MSMEG_6535) from Mycobacterium smegmatis. Expression of EFG2 was detected in stationary phase cultures of M.smegmatis (Msm). Our in vitro studies show that while MsmEFG2 binds guanine nucleotides, it lacks the ribosome-dependent GTPase activity characteristic of EFGs. Furthermore,unlike MsmEFG (MSMEG_1400), MsmEFG2 failed to rescue an E. coli strain harboring a temperature-sensitive allele of EFG, for its growth at thenon-permissive temperature. Subsequent experiments showed that the fusA2 gene could be disrupted in M. smegmatis mc(2)155 with Kan(R)marker. The M. smegmatis fusA2::kan strain was viable and showed growth kinetics similar to that of the parent strain (wild-type for fusA2).However, in the growth competition assays, the disruption of fusA2 was found to confer a fitness disadvantage to M. smegmatis, raising the possibility that EFG2 is of some physiological relevance to mycobacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined whether C-terminal residues of soluble recombinant FtsZ of Mycobacterium tuberculosis (MtFtsZ) have any role in MtFtsZ polymerization in vitro. MtFtsZ-delta C1, which lacks C-terminal extreme Arg residue (underlined in the C-terminal extreme stretch of 13 residues, DDDDVDVPPFMRR), but retaining the penultimate Arg residue (DDDDVDVPPFMR), polymerizes like full-length MtFtsZ in vitro. However, MtFtsZ-delta C2 that lacks both the Arg residues at the C-terminus (DDDDVDVPPFM), neither polymerizes at pH 6.5 nor forms even single- or double-stranded filaments at pH 7.7 in the presence of 10 mM CaCl2. Neither replacement of the penultimate Arg residue, in the C-terminal Arg deletion mutant DDDDVDVPPFMR, with Lys or His or Ala or Asp (DDDDVDVPPFMK/H/A/D) enabled polymerization. Although MtFtsZ-delta C2 showed secondary and tertiary structural changes, which might have affected polymerization, GTPase activity of MtFtsZ-delta C2 was comparable to that of MtFtsZ. These data suggest that MtFtsZ requires an Arg residue as the extreme C-terminal residue for polymerization in vitro. The polypeptide segment containing C-terminal 67 residues, whose coordinates were absent from MtFtsZ crystal structure, was modeled on tubulin and MtFtsZ dimers. Possibilities for the influence of the C-terminal Arg residues on the stability of the dimer and thereby on MtFtsZ polymerization have been discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Fatty acids are indispensable constituents of mycolic acids that impart toughness & permeability barrier to the cell envelope of M. tuberculosis. Biotin is an essential co-factor for acetyl-CoA carboxylase (ACC) the enzyme involved in the synthesis of malonyl-CoA, a committed precursor, needed for fatty acid synthesis. Biotin carboxyl carrier protein (BCCP) provides the co-factor for catalytic activity of ACC. Methodology/Principal Findings: BPL/BirA (Biotin Protein Ligase), and its substrate, biotin carboxyl carrier protein (BCCP) of Mycobacterium tuberculosis (Mt) were cloned and expressed in E. coli BL21. In contrast to EcBirA and PhBPL, the similar to 29.5 kDa MtBPL exists as a monomer in native, biotin and bio-5'AMP liganded forms. This was confirmed by molecular weigt profiling by gel filtration on Superdex S-200 and Dynamic Light Scattering (DLS). Computational docking of biotin and bio-5'AMP to MtBPL show that adenylation alters the contact residues for biotin. MtBPL forms 11 H-bonds with biotin, relative to 35 with bio-5'AMP. Docking simulations also suggest that bio-5'AMP hydrogen bonds to the conserved `GRGRRG' sequence but not biotin. The enzyme catalyzed transfer of biotin to BCCP was confirmed by incorporation of radioactive biotin and by Avidin blot. The K-m for BCCP was similar to 5.2 mu M and similar to 420 nM for biotin. MtBPL has low affinity (K-b = 1.06 x 10(-6) M) for biotin relative to EcBirA but their K-m are almost comparable suggesting that while the major function of MtBPL is biotinylation of BCCP, tight binding of biotin/bio-5'AMP by EcBirA is channeled for its repressor activity. Conclusions/Significance: These studies thus open up avenues for understanding the unique features of MtBPL and the role it plays in biotin utilization in M. tuberculosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycobacterium leprae recA harbors an in-frame insertion sequence that encodes an intein homing endonuclease (PI-MleI). Most inteins (intein endonucleases) possess two conserved LAGLIDADG (DOD) motifs at their ctive center. A common feature of LAGLIDADG-type homing endonucleases is that they recognize and cleave the same or very similar DNA sequences. However, PI-MleI is distinctive from other members of the family of LAGLIDADG-type HEases for its modular structure with functionally separable domains for DNA-binding and cleavage, each with distinct sequence preferences. Sequence alignment analyses of PI-MleI revealed three putative LAGLIDADG motifs; however, there is conflicting bioinformatics data in regard to their identity and specific location within the intein polypeptide. To resolve this conflict and to determine the active-site residues essential for DNA target site recognition and double-stranded DNA cleavage, we performed site-directed mutagenesis of presumptive catalytic residues in the LAGLIDADG motifs. Analysis of target DNA recognition and kinetic parameters of the wild-type PI-MleI and its variants disclosed that the two amino acid residues, Asp(122) (in Block C) and Asp(193) (in functional Block E), are crucial to the double-stranded DNA endonuclease activity, whereas Asp(218) (in pseudo-Block E) is not. However, despite the reduced catalytic activity, the PI-MleI variants, like the wild-type PI-MleI, generated a footprint of the same length around the insertion site. The D122T variant showed significantly reduced catalytic activity, and D122A and D193A mutations although failed to affect their DNA-binding affinities, but abolished the double-stranded DNA cleavage activity. On the other hand, D122C variant showed approximately twofold higher double-stranded DNA cleavage activity, compared with the wild-type PI-MleI. These results provide compelling evidence that Asp(122) and Asp(193) in DOD motif I and II, respectively, are bona fide active-site residues essential for DNA cleavage activity. The implications of these results are discussed in this report.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arabinomannan-containing glycolipids, relevant to the mycobacterial cell-wall component lipoarabinomannan, were synthesized by chemical methods. The glycolipids were presented with tri- and tetrasaccharide arabinomannans as the sugar portion and a double alkyl chain as the lyophilic portion. Following synthesis, systematic biological and biophysical studies were undertaken in order to identify the effects of the glycolipids during mycobacterium growth. The studies included mycobacterial growth, biofilm formation and motility assays. From the studies, it was observed that the synthetic glycolipid with higher arabinan residues inhibited the mycobacterial growth, lessened the biofilm formation and impaired the motility of mycobacteria. A surface plasmon resonance study involving the immobilized glycan surface and the mycobacterial crude lysates as analytes showed specificities of the interactions. Further, it was found that cell lysates from motile bacteria bound oligosaccharide with higher affinity than non-motile bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elicitation of drug resistance and various survival strategies inside host macrophages have been the hallmarks of Mycobacterium tuberculosis as a successful pathogen. ATP Binding Cassette (ABC) transporter type proteins are known to be involved in the efflux of drugs in bacterial and mammalian systems. FtsE, an ABC transporter type protein, in association with the integral membrane protein FtsX, is involved in the assembly of potassium ion transport proteins and probably of cell division proteins as well, both of which being relevant to tubercle bacillus. In this study, we cloned ftsE gene of M. tuberculosis, overexpressed and purified. The recombinant MtFtsE-6xHis protein and the native MtFtsE protein were found localized on the membrane of E. coli and M. tuberculosis cells, respectively. MtFtsE-6xHis protein showed ATP binding in vitro, for which the K42 residue in the Walker A motif was found essential. While MtFtsE-6xHis protein could partially complement growth defect of E. coli ftsE temperature-sensitive strain MFT1181, co-expression of MtFtsE and MtFtsX efficiently complemented the growth defect, indicating that the MtFtsE and MtFtsX proteins might be performing an associated function. MtFtsE and MtFtsX-6xHis proteins were found to exist as a complex on the membrane of E. coli cells co-expressing the two proteins.