913 resultados para MUSCLE MOTOR-NEURONS
Resumo:
Increasing the impulse activity of neurons in vivo over 3 or more days causes a reduction in transmitter release that persists for days or weeks (eg. Mercier and Atwood, 1989). This effect is usually accompanied by decreased synaptic fatigue. These two changes involve presynaptic mechanisms and indicate "long-term adaptation" (LTA) of nerve terminals. Previous experiments have shown that LTA requires extracellular calcium and protein synthesis (eg. Hong and Lnenicka, Soc. Neurosci. Abstr. 17:1322) and appears to involve communication between the cell body and the nerve terminals. The present study examines the possibility that the reduction in transmitter release is caused by an -increase in the calcium buffering ability within the nerve terminals. It examines the responses of adapted and control nerve terminals to exogenously applied calcium buffer, BAPTA-AM, which decreases transmitter release (Robitialle and Charlton, 1992). If LTA increases intrinsic Ca2+-buffering, the membrane permeant form of BAPTA should have less effect on adapted nerve terminals than on controls. Experiments are performed on the phasic abdominal extensor motor neurons of the crayfish, Procambarns clarkii. BAPTA-AM decreases excitatory postsynaptic potentials (EPSP's) of the phasic extensor muscles in a dosedependent manner between 5 and 50 JLM. LTA is elicited by in vivo stimulation at 2.5 Hz for 2-4 h per day over 3 days, which reduces EPSP's by over 50%. Experiments indicate that BAPTA-AM produces no significant change in EPSP reduction in adapted neurons when compared to controls. These results do not support the hypothesis that increased daily activity alters rapid intrinsic calcium buffers, that are able to reduce transmitter output in the same manner as BAPTA.
Resumo:
Neuropeptides can modulate physiological properties of neurons in a cell-specific manner. The present work examines whether a neuropeptide can also modulate muscle tissue in a cell-specific manner, using identified muscle cells in third instar larvae of fruit flies. DPKQDFMRFa, a modulatory peptide in the fruit fly Drosophila melanogaster, has been shown to enhance transmitter release from motor neurons and to elicit contractions by a direct effect on muscle cells. We report that DPKQDFMRFa causes a nifedipine-sensitive drop in input resistance in some muscle cells (6 and 7) but not others (12 and 13). The peptide also increased the amplitude of nerve-evoked contractions and compound excitatory junctional potentials (EJPs) to a greater degree in muscle cells 6 and 7 than 12 and 13. Knocking down FMRFa receptor (FR) expression separately in nerve and muscle indicate that both presynaptic and postsynaptic FR expression contributed to the enhanced contractions, but EJP enhancement was due mainly to presynaptic expression. Muscle-ablation showed that DPKQDFMRFa induced contractions and enhanced nerve-evoked contractions more strongly in muscle cells 6 and 7 than cells 12 and 13. In situ hybridization indicated that FR expression was significantly greater in muscle cells 6 and 7 than 12 and 13. Taken together, these results indicate that DPKQDFMRFa can elicit cell-selective effects on muscle fibres. The ability of neuropeptides to work in a cell-selective manner on neurons and muscle cells may help explain why so many peptides are encoded in invertebrate and vertebrate genomes.
Resumo:
Signal relay by guidance receptors at the axonal growth cone is a process essential for the assembly of a functional nervous system. We investigated the in vivo function of Src family kinases (SFKs) as growth cone guidance signaling intermediates in the context of spinal lateral motor column (LMC) motor axon projection toward the ventral or dorsal limb mesenchyme. Using in situ mRNA detection we determined that Src and Fyn are expressed in LMC motor neurons of chick and mouse embryos at the time of limb trajectory selection. Inhibition of SFK activity by C-terminal Src kinase (Csk) overexpression in chickLMCaxons using in ovo electroporation resulted inLMC axons selecting the inappropriate dorsoventral trajectory within the limb mesenchyme, with medial LMC axon projecting into the dorsal and ventral limb nerve with apparently random incidence. We also detected LMC axon trajectory choice errors in Src mutant mice demonstrating a nonredundant role for Src in motor axon guidance in agreement with gain and loss of Src function in chickLMCneurons which led to the redirection ofLMCaxons. Finally, Csk-mediated SFK inhibition attenuated the retargeting ofLMCaxons caused by EphA or EphB over-expression, implying the participation of SFKs in Eph-mediated LMC motor axon guidance. In summary, our findings demonstrate that SFKs are essential for motor axon guidance and suggest that they play an important role in relaying ephrin:Eph signals that mediate the selection of motor axon trajectory in the limb.
Resumo:
La sclérose latérale amyotrophique est une maladie neurodégénérative fatale caractérisée par la dégénérescence progressive des neurones moteurs centraux et périphériques. L’un des premiers signes de la maladie est la dénervation de la jonction neuromusculaire (JNM). Les diverses unités motrices (UM) ne présentent toutefois pas la même vulnérabilité à la dénervation dans la SLA: les UM rapide fatigables sont en fait les plus vulnérables et les UM lentes sont les plus résistantes. Alors que des études précédentes ont démontré dans plusieurs modèles animaux de la SLA de nombreuses variations synaptiques, les découvertes ont été contradictoires. Par ailleurs, le type d’UM n’a pas été tenu en compte dans ces divers travaux. Nous avons donc émis l’hypothèse que la présence de la mutation SOD1 pourrait affecter différemment la transmission synaptique des UM, en accord avec leur vulnérabilité sélective. En effectuant des enregistrements électrophysiologiques et de l’immunohistochimie, nous avons étudié la transmission synaptique des différents types d’UM du muscle à contraction rapide Extensor Digitorum Longus (EDL; rapide fatigable (FF) MU) et du muscle à contraction lente Soleus (SOL; lente (S) and rapide fatigue-résistante (FR) MU) de la souris SOD1G37R et leur congénères WT. Pour identifier le type d’UM, un marquage par immunohistochimie des chaînes de myosine a été effectué. Un triple marquage de la JNM a également été effectué pour vérifier son intégrité aux différents stades de la maladie. À P160, dans la période asymptomatique de la maladie, alors qu’aucune altération morphologique n’était présente, l’activité évoquée était déjà altérée différemment en fonction des UM. Les JNMs FF mutantes ont démontré une diminution de l’amplitude des potentiels de plaque motrice (PPM) et du contenu quantique, alors que les JNMs lentes démontraient pratiquement le contraire. Les JNMs FR montraient quant à elles une force synaptique semblable au WT. À P380, dans la période présymtomatique, de nombreuses altérations morphologiques ont été observées dans le muscle EDL, incluant la dénervation complète, l’innervation partielle et les extensions du nerf. La transmission synaptique évoquée des UM FF étaient toujours réduites, de même que la fréquence des potentiels de plaque motrice miniatures. À P425, à l’apparition des premiers symptômes, l’activité synaptique des JNMs S était redevenue normale alors que les JNMs FR ont montré à ce moment une diminution du contenu quantique par rapport au contrôle. De manière surprenante, aucun changement du ratio de facilitation n’a été observé malgré les changements flagrants de la force synaptique. Ces résultats révèlent que la fonction de la JNM est modifiée différemment en fonction de la susceptibilité des UM dans l’ALS. Cette étude fournit des pistes pour une meilleure compréhension de la physiologie de la JNM durant la pathologie qui est cruciale au développement d’une thérapie adéquate ciblant la JNM dans la SLA.
Resumo:
The transcription factor REST is a key suppressor of neuronal genes in non-neuronal tissues. REST has been shown to suppress pro-neuronal microRNAs in neural progenitors indicating that REST-mediated neurogenic suppression may act in part via microRNAs. We used neural differentiation of Rest-null mouse ESC to identify dozens of microRNAs regulated by REST during neural development. One of the identified microRNAs, miR-375, was upregulated during human spinal motor neuron development. We found that miR-375 facilitates spinal motor neurogenesis by targeting the cyclin kinase CCND2 and the transcription factor PAX6. Additionally, miR-375 inhibits the tumor suppressor p53 and protects neurons from apoptosis in response to DNA damage. Interestingly, motor neurons derived from a spinal muscular atrophy patient displayed depressed miR-375 expression and elevated p53 protein levels. Importantly, SMA motor neurons were significantly more susceptible to DNA damage induced apoptosis suggesting that miR-375 may play a protective role in motor neurons.
Resumo:
Despite the favorable treatment of cranial nerve neuropathology in adulthood, some cases are resistant to therapy leading to permanent functional impairments In many cases, suitable treatment is problematic as the therapeutic target remains unknown Basic fibroblast growth factor (bFGF, FGF 2) is involved in neuronal maintenance and wound repair following nervous system lesions It is one of few neurotrophic molecules acting in autocrine, paracrine and intracrine fashions depending upon specific circumstances Peripheral cranial somatic motor neurons, i e hypoglossal (XII) neurons, may offer a unique opportunity to study cellular FGF 2 mechanisms as the molecule is present in the cytoplasm of neurons and in the nuclei of astrocytes of the central nervous system FGF-2 may trigger differential actions during development, maintenance and lesion of XII neurons because axotomy of those cells leads to cell death during neonatal ages, but not in adult life Moreover, the modulatory effects of astroglial FGF 2 and the Ca+2 binding protein S100 beta have been postulated in paracrine mechanisms after neuronal lesions In our study, adult Wistar rats received a unilateral crush or transection (with amputation of stumps) of XII nerve, and were sacrificed after 72 h or 11 days Brains were processed for immunohistochemical localization of neurofilaments (NF), with or without counterstaining for Nissl substance, ghat fibrillary acidic protein (GFAP, as a marker of astrocytes), S100 beta and FGF-2 The number of Nissl positive neurons of axotomized XII nucleus did not differ from controls The NF immunoreactivity increased in the perikarya and decreased in the neuropil of axotomized XII neurons 11 days after nerve crush or transection An astrocytic reaction was seen in the ipsilateral XII nucleus of the crushed or transected animals 72 h and 11 days after the surgery The nerve lesions did not change the number of FGF-2 neurons in the ipsilateral XII nucleus, however, the nerve transection increased the number of FGF-2 ghat profiles by 72 h and 11 days Microdensitometric image analysis revealed a short lasting decrease in the intensity of FGF 2 immunoreactivity in axotomized XII neurons by 72 h after nerve crush or transection and also an elevation of FGF-2 in the ipsilateral of ghat nuclei by 72h and 11 days after the two lesions S100 beta decreased in astrocytes of 11-day transected XII nucleus The two-color immunoperoxidase for the simultaneous detection of the GFAP/FGF-2 indicated FGF-2 upregulation in the nuclei of reactive astrocytes of the lesioned XII nucleus Astroglial FGF-2 may exert paracrine trophic actions in mature axotomized XII neurons and might represent a therapeutic target for neuroprotection in peripheral nerve pathology (C) 2009 Elsevier GmbH All rights reserved
Resumo:
Mandibular movements occur through the triggering of trigeminal motoneurons. Aberrant movements by orofacial muscles are characteristic of orofacial motor disorders, such as nocturnal bruxism (clenching or grinding of the dentition during sleep). Previous studies have suggested that autonomic changes occur during bruxism episodes. Although it is known that emotional responses increase jaw movement, the brain pathways linking forebrain limbic nuclei and the trigeminal motor nucleus remain unclear. Here we show that neurons in the lateral hypothalamic area, in the central nucleus of the amygdala, and in the parasubthalamic nucleus, project to the trigeminal motor nucleus or to reticular regions around the motor nucleus (Regio h) and in the mesencephalic trigeminal nucleus. We observed orexin co-expression in neurons projecting from the lateral hypothalamic area to the trigeminal motor nucleus. In the central nucleus of the amygdala, neurons projecting to the trigeminal motor nucleus are innervated by corticotrophin-releasing factor immunoreactive fibers. We also observed that the mesencephalic trigeminal nucleus receives dense innervation from orexin and corticotrophin-releasing factor immunoreactive fibers. Therefore, forebrain nuclei related to autonomic control and stress responses might influence the activity of trigeminal motor neurons and consequently play a role in the physiopathology of nocturnal bruxism.
Resumo:
The lateral hypothalamic area (LHA) participates in the integration of sensory information and somatomotor responses associated with hunger and thirst. Although the LHA is neurochemically heterogeneous, a particularly high number of cells express melanin-concentrating hormone (MCH), which has been reported to play a role in energy homeostasis. Treatment with MCH increases food intake, and MCH mRNA is overexpressed in leptin-deficient (ob/ob) mice. Mice lacking both MCH and leptin present reduced body fat, mainly due to increased resting energy expenditure and locomotor activity. Dense MCH innervation of the cerebral motor cortex (MCx) and the pedunculopontine tegmental nucleus (PPT), both related to motor function, has been reported. Therefore, we postulated that a specific group of MCH neurons project to these areas. To investigate our hypothesis, we injected retrograde tracers into the MCx and the PPT of rats, combined with immunohistochemistry. We found that 25% of the LHA neurons projecting to the PPT were immunoreactive for MCH, and that 75% of the LHA neurons projecting to the MCx also contained MCH. Few MCH neurons were found to send collaterals to both areas. We also found that 15% of the incerto-hypothalamic neurons projecting to the PPT expressed MCH immunoreactivity. Those neurons preferentially innervated the rostral PPT. In addition, we observed that the MCH neurons express glutamic acid decarboxylase mRNA, a gamma-aminobutyric acid (GABA) synthesizing enzyme. We postulate that MCH/GABA neurons are involved in the inhibitory modulation of the innervated areas, decreasing motor activity in states of negative energy balance. (C) 2007 Published by Elsevier B.V.
Resumo:
The silent period is a misunderstood electrophysiological phenomenon leading to several different hypotheses explaining its electrogenesis. It has been studied by different authors and different methodologies giving a wide variability of results, therefore an exact pattern of its normal values does not exist. This work was undertaken to define the normal morphology and duration of the silent period obtained by supramaximal stimulus of the median nerve, during maximum isometric effort of the abductor pollicis brevis muscle against resistance, using 20 adult volunteers without neurological alterations. The normal median duration was 104.6 milliseconds. The same methodology was applied to 20 hands from 20 patients with carpal tunnel syndrome. The silent period showed many types of morphological alterations, but the major alteration observed was a tendency to temporal elongation. No correlation between the severity of the carpal tunnel syndrome and the silent period alterations were observed.
Resumo:
It was studied the trapezius muscle and serratus anterior muscle in 24 male volunteers using a 2-channel TECA TE 4 electromyograph and Hewlett Packard surface electrodes, during the execution of four different modalities of military press exercises with open grip. The results showed that TS acted significantly in the modalities standing and sitting press behind neck, while SI acted in all the modalities, i.e., standing and sitting press behind neck and forward, justifying their inclusion as basic exercises for physical conditioning programmes.
Resumo:
Electromyographic activity of the trapezius muscle and serratus anterior muscle was analysed in 4 different modalities of military press exercises, each of them with 2 grips: open and middle. It was analyzed 24 male volunteers using a 2-channel TECA TE 4 electromyograph and Hewlett Packard surface electrodes. The TS and SI muscles acted with high and very high activity in all the modalities of military press exercises. Statistically, they did not show significative difference in the performance of the exercises with open and middle grip, justifying the inclusion of this group of exercises with both grips for the physical conditioning programmes.
Resumo:
Electromyographic activity of the trapezius muscle and serratus anterior muscle was analysed in 24 male volunteers using a 2-channel TECA TE 4 electromyograp, during the execution of four different modalities of military press exercises with middle grip. The trapezius acted preferentially in the modalities standing press behind neck; and sitting forward and press behind neck, while SI did not show any significative difference among the modalities. The high levels of action potentials with which TS and SI acted justify the inclusion of these exercises in physical programmes.
Resumo:
Silent period was evaluated in 20 adult male patients with chronic renal failure undergoing hemodialysis. Readings were obtained by supramaximal stimulus to the median nerve, during maximum isometric effort of the abductor pollicis brevis muscle against resistance. Two types of abnormalities were observed, motor neuron hypoexcitability with elongated silent period, and motor neuron hyperexcitability with reduction or absence of silent period. Some abnormalities are probably linked with dialysis duration, but show no correlation to presence or absence of peripheral neuropathy. The silent period alterations described in this study could possibly correlate with some other clinical feature frequently seen in patients with chronic renal failure such as hypereflexia of the deep tendon reflexes.
Resumo:
Due to a shortage of textbooks with specific data on muscular activity concerning physical conditioning and sports, we analysed electromyographically the muscles pectoralis major and deltoideus anterior, bilaterally, in inclined flying exercises, during the concentric and eccentric phases, with external loads of 25, 50, 75 and 100% of the maximum load. The electromyographic analysis was performed in eleven male volunteers with MEDITRACE-200 surface electrodes connected to a six-channel biologic signal acquisition module coupled to a PC/AT computer. The electromyographic signals were processed and the obtained effective values were normalized through maximum voluntary isometric contraction. Statistically, the results showed that all the muscles studied presented significant differences between the concentric and the eccentric phases, with higher electromyographic activity during the concentric phase. By analysing the different loads for each muscle in both phases, significant electromyographic activity was observed for all muscles. When the effect of each load on each muscle during the concentric phase was analysed, it was noticed that the muscles on the left were more active than those on the right side, while in the eccentric phase the muscles had different behavior.
Resumo:
This study aimed to evaluate the motor response time and ability to develop joint torque at the knee and ankle in older women with and without a history of falls, in addition to investigating the effect of aging on these capacities. We assessed 18 young females, 21 older female fallers and 22 older female non-fallers. The peak torque, rate of torque development, rate of electromyography (EMG) rise, reaction time, premotor time and motor time were obtained through a dynamometric assessment and simultaneous electromyography. Surface EMGs of the rectus femoris (RF), vastus lateralis (VL), biceps femoris (BF), gastrocnemius lateralis (GL) and tibialis anterior (TA) muscles were recorded. Knee extension and flexion peak torques were lower in older fallers than in non-fallers. Knee extension and flexion and ankle plantarflexion and dorsiflexion peak torques were lower in both older groups than in the younger group. The rate of EMG rise of the BF and the motor time of the TA were lower and higher, respectively, in older fallers than in the younger adults. The time to reach peak torque in knee extension/flexion and ankle plantarflexion/dorsiflexion and the motor times of the RF, VL, BF and GL were higher in both older groups than in the younger groups. The motor time of the TA during ankle dorsiflexion and the knee extension peak torque were the major predictors of falls in older women, accounting for approximately 28% of the number of falls. Thus, these results further reveal the biomechanical parameters that affect the risk of falls and provide initial findings to support the prescription of exercises in fall prevention programs. © 2013 Elsevier Ltd.