972 resultados para MULTIVARIATE CONTROL CHARTS
Resumo:
This is the first paper that shows and theoretically analyses that the presence of auto-correlation can produce considerable alterations in the Type I and Type II errors in univariate and multivariate statistical control charts. To remove this undesired effect, linear inverse ARMA filter are employed and the application studies in this paper show that false alarms (increased Type I errors) and an insensitive monitoring statistics (increased Type II errors) were eliminated.
Resumo:
The oil industry has several segments that can impact the environment. Among these, produced water which has been highlight in the environmental problem because of the great volume generated and its toxic composition. Those waters are the major source of waste in the oil industry. The composition of the produced water is strongly dependent on the production field. A good example is the wastewater produced on a Petrobras operating unit of Rio Grande do Norte and Ceará (UO-RNCE). A single effluent treatment station (ETS) of this unit receives effluent from 48 wells (onshore and offshore), which leads a large fluctuations in the water quality that can become a complicating factor for future treatment processes. The present work aims to realize a diagnosis of a sample of produced water from the OU - RNCE in compliance to certain physical and physico-chemical parameters (chloride concentration, conductivity, dissolved oxygen, pH, TOG (oil & grease), nitrate concentration, turbidity, salinity and temperature). The analysis of the effluent is accomplished by means of a MP TROLL 9500 Multiparameter probe, a TOG/TPH Infracal from Wilks Enterprise Corp. - Model HATR - T (TOG) and a MD-31 condutivimeter of Digimed. Results were analyzed by univariated and multivariated analysis (principal component analysis) associated statistical control charts. The multivariate analysis showed a negative correlation between dissolved oxygen and turbidity (-0.55) and positive correlations between salinity and chloride (1), conductivity, chloride and salinity (0.70). Multivariated analysis showed there are seven principal components which can explain the variability of the parameters. The variables, salinity, conductivity and chloride were the most important variables, with, higher sampling variance. Statistical control charts have helped to establish a general trend between the physical and chemical evaluated parameters
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We propose a new statistic to control the covariance matrix of bivariate processes. This new statistic is based on the sample variances of the two quality characteristics, in short VMAX statistic. The points plotted on the chart correspond to the maximum of the values of these two variances. The reasons to consider the VMAX statistic instead of the generalized variance vertical bar S vertical bar is its faster detection of process changes and its better diagnostic feature; that is, with the VMAX statistic it is easier to identify the out-of-control variable. We study the double sampling (DS) and the exponentially weighted moving average (EWMA) charts based on the VMAX statistic. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A standard (X) over bar chart for controlling the process mean takes samples of size no at specified, equally-spaced, fixed-time points. This article proposes a modification of the standard (X) over bar chart that allows one to take additional samples, bigger than no, between these fixed times. The additional samples are taken from the process when there is evidence that the process mean moved from target. Following the notation proposed by Reynolds (1996a) and Costs (1997) we shortly call the proposed (X) over bar chart as VSSIFT (X) over bar chart: where VSSIFT means variable sample size and sampling intervals with fixed times. The (X) over bar chart with the VSSIFT feature is easier to be administered than a standard VSSI (X) over bar chart that is not constrained to sample at the specified fixed times. The performances of the charts in detecting process mean shifts are comparable.
Resumo:
This paper presents an economic design of (X) over bar control charts with variable sample sizes, variable sampling intervals, and variable control limits. The sample size n, the sampling interval h, and the control limit coefficient k vary between minimum and maximum values, tightening or relaxing the control. The control is relaxed when an (X) over bar value falls close to the target and is tightened when an (X) over bar value falls far from the target. A cost model is constructed that involves the cost of false alarms, the cost of finding and eliminating the assignable cause, the cost associated with production in an out-of-control state, and the cost of sampling and testing. The assumption of an exponential distribution to describe the length of time the process remains in control allows the application of the Markov chain approach for developing the cost function. A comprehensive study is performed to examine the economic advantages of varying the (X) over bar chart parameters.
Resumo:
An economic model including the labor resource and the process stage configuration is proposed to design g charts allowing for all the design parameters to be varied in an adaptive way. A random shift size is considered during the economic design selection. The results obtained for a benchmark of 64 process stage scenarios show that the activities configuration and some process operating parameters influence the selection of the best control chart strategy: to model the random shift size, its exact distribution can be approximately fitted by a discrete distribution obtained from a relatively small sample of historical data. However, an accurate estimation of the inspection costs associated to the SPC activities is far from being achieved. An illustrative example shows the implementation of the proposed economic model in a real industrial case. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The usual practice in using a control chart to monitor a process is to take samples of size n from the process every h hours. This article considers the properties of the X̄ chart when the size of each sample depends on what is observed in the preceding sample. The idea is that the sample should be large if the sample point of the preceding sample is close to but not actually outside the control limits and small if the sample point is close to the target. The properties of the variable sample size (VSS) X̄ chart are obtained using Markov chains. The VSS X̄ chart is substantially quicker than the traditional X̄ chart in detecting moderate shifts in the process.
Resumo:
A standard X̄ chart for controlling the process mean takes samples of size n0 at specified, equally-spaced, fixed-time points. This article proposes a modification of the standard X chart that allows one to take additional samples, bigger than n0, between these fixed times. The additional samples are taken from the process when there is evidence that the process mean moved from target. Following the notation proposed by Reynolds (1996a) and Costa (1997) we shortly call the proposed X chart as VSSIFT X chart where VSSIFT means variable sample size and sampling intervals with fixed times. The X chart with the VSSIFT feature is easier to be administered than a standard VSSI X chart that is not constrained to sample at the specified fixed times. The performances of the charts in detecting process mean shifts are comparable. Copyright © 1998 by Marcel Dekker, Inc.
Resumo:
Varying the parameters of the X̄ chart has been explored extensively in recent years. In this paper, we extend the study of the X̄ chart with variable parameters to include variable action limits. The action limits establish whether the control should be relaxed or not. When the X̄ falls near the target, the control is relaxed so that there will be more time before the next sample and/or the next sample will be smaller than usual. When the X̄ falls far from the target but not in the action region, the control is tightened so that there is less time before the next sample and/or the next sample will be larger than usual. The goal is to draw the action limits wider than usual when the control is relaxed and narrower than usual when the control is tightened. This new feature then makes the X̄ chart more powerful than the CUSUM scheme in detecting shifts in the process mean.
Resumo:
Purpose - The aim of this paper is to present a synthetic chart based on the non-central chi-square statistic that is operationally simpler and more effective than the joint X̄ and R chart in detecting assignable cause(s). This chart will assist in identifying which (mean or variance) changed due to the occurrence of the assignable causes. Design/methodology/approach - The approach used is based on the non-central chi-square statistic and the steady-state average run length (ARL) of the developed chart is evaluated using a Markov chain model. Findings - The proposed chart always detects process disturbances faster than the joint X̄ and R charts. The developed chart can monitor the process instead of looking at two charts separately. Originality/value - The most important advantage of using the proposed chart is that practitioners can monitor the process by looking at only one chart instead of looking at two charts separately. © Emerald Group Publishing Limted.
Resumo:
The T2 chart and the generalized variance |S| chart are the usual tools for monitoring the mean vector and the covariance matrix of multivariate processes. The main drawback of these charts is the difficulty to obtain and to interpret the values of their monitoring statistics. In this paper, we study control charts for monitoring bivariate processes that only requires the computation of sample means (the ZMAX chart) for monitoring the mean vector, sample variances (the VMAX chart) for monitoring the covariance matrix, or both sample means and sample variances (the MCMAX chart) in the case of the joint control of the mean vector and the covariance matrix.
Resumo:
The VSS X- chart is known to perform better than the traditional X- control chart in detecting small to moderate mean shifts in the process. Many researchers have used this chart in order to detect a process mean shift under the assumption of known parameters. However, in practice, the process parameters are rarely known and are usually estimated from an in-control Phase I data set. In this paper, we evaluate the (run length) performances of the VSS X- control chart when the process parameters are estimated and we compare them in the case where the process parameters are assumed known. We draw the conclusion that these performances are quite different when the shift and the number of samples used during the phase I are small. ©2010 IEEE.