996 resultados para MULTIPLE ORIGINS
Resumo:
The habit of inducing plant galls has evolved multiple times among insects but most species diversity occurs in only a few groups, such as gall midges and gall wasps. This phylogenetic clustering may reflect adaptive radiations in insect groups in which the trait has evolved. Alternatively, multiple independent origins of galling may suggest a selective advantage to the habit. We use DNA sequence data to examine the origins of galling among the most speciose group of gall-inducing scale insects, the eriococcids. We determine that the galling habit has evolved multiple times, including four times in Australian taxa, suggesting that there has been a selective advantage to galling in Australia. Additionally, although most gall-inducing eriococcid species occur on Myrtaceae, we found that lineages feeding on Myrtaceae are no more likely to have evolved the galling habit than those feeding on other plant groups. However, most gall-inducing species-richness is clustered in only two clades (Apiomorpha and Lachnodius + Opisthoscelis), all of which occur exclusively on Eucalyptus s.s. The Eriococcidae and the large genus Eriococcus were determined to be non-monophyletic and each will require revision. (C) 2004 The Linnean Society of London.
Resumo:
INTRODUCTION: Infertility treatments are a major source of the increase in multiple pregnancies (MPs). AIMS: The aims of the present study were (1.) to investigate the origin and maternal/neonatal outcomes of MP and (2.) to review the different measures that can be adopted to reduce these serious complications. METHODS: The study included all women with multiple births between 1 January 1995 and 31 December 2006 at the University Hospital of Bern, Switzerland. The outcomes associated with the various origins of MP (natural conception, ovarian stimulation [OS] ‒ in-vitro fertilisation [IVF-ICSI]) were analysed using a multinomial logistic regression model. An analysis of the Swiss law on reproductive medicine and its current proposed revision, as well as a literature review using Pubmed, was carried out. RESULTS: A total of 592 MP were registered, 91% (n = 537) resulted in live births. There was significantly more neonatal/maternal morbidity in MP after OS compared with natural conception and even with the IVF-ICSI group. With a policy of elective single embryo transfer (eSET), twin rates after IVF-ICSI can be reduced to <5% and triplets to <1%. CONCLUSIONS: After OS, more triplets are found and the outcome of MP is worse. MP is known to be associated with morbidity, mortality, and economic and social risks. To counteract these complications (1.) better training for physicians performing OS should be encouraged and (2.) the Swiss law on reproductive medicine needs to be changed, with the introduction of eSET policies. This would lead to a dramatic decrease in neonatal and maternal morbidity/mortality as well as significant cost reductions for the Swiss healthcare system.
Resumo:
C(4) photosynthesis is an adaptive trait conferring an advantage in warm and open habitats. It originated multiple times and is currently reported in 18 plant families. It has been recently shown that phosphoenolpyruvate carboxylase (PEPC), a key enzyme of the C(4) pathway, evolved through numerous independent but convergent genetic changes in grasses (Poaceae). To compare the genetics of multiple C(4) origins on a broader scale, we reconstructed the evolutionary history of the C(4) pathway in sedges (Cyperaceae), the second most species-rich C(4) family. A sedge phylogeny based on two plastome genes (rbcL and ndhF) has previously identified six fully C(4) clades. Here, a relaxed molecular clock was used to calibrate this tree and showed that the first C(4) acquisition occurred in this family between 19.6 and 10.1 Ma. According to analyses of PEPC-encoding genes (ppc), at least five distinct C(4) origins are present in sedges. Two C(4) Eleocharis species, which were unrelated in the plastid phylogeny, acquired their C(4)-specific PEPC genes from a single source, probably through reticulate evolution or a horizontal transfer event. Acquisitions of C(4) PEPC in sedges have been driven by positive selection on at least 16 codons (3.5% of the studied gene segment). These sites underwent parallel genetic changes across the five sedge C(4) origins. Five of these sites underwent identical changes also in grass and eudicot C(4) lineages, indicating that genetic convergence is most important within families but that identical genetic changes occurred even among distantly related taxa. These lines of evidence give new insights into the constraints that govern molecular evolution.
Resumo:
BACKGROUND AND AIMS: Black cherry (Prunus serotina) is a North American tree that is rapidly invading European forests. This species was introduced first as an ornamental plant, then it was massively planted by foresters in many countries, but its origins and the process of invasion remain poorly documented. Based on a genetic survey of both native and invasive ranges, the invasion history of black cherry was investigated by identifying putative source populations and then assessing the importance of multiple introductions on the maintenance of gene diversity. METHODS: Genetic variability and structure of 23 populations from the invasive range and 22 populations from the native range were analysed using eight nuclear microsatellite loci and five chloroplast DNA regions. KEY RESULTS: Chloroplast DNA diversity suggests there were multiple introductions from a single geographic region (the north-eastern United States). A low reduction of genetic diversity was observed in the invasive range for both nuclear and plastid genomes. High propagule pressure including both the size and number of introductions shaped the genetic structure in Europe and boosted genetic diversity. Populations from Denmark, The Netherlands, Belgium and Germany showed high genetic diversity and low differentiation among populations, supporting the hypothesis that numerous introduction events, including multiple individuals and exchanges between sites, have taken place during two centuries of plantation. CONCLUSIONS: This study postulates that the invasive black cherry has originated from east of the Appalachian Mountains (mainly the Allegheny plateau) and its invasiveness in north-western Europe is mainly due to multiple introductions containing high numbers of individuals.
Resumo:
Reliable and sufficiently discriminative methods are needed for differentiating individual strains of Salmonella enterica serotype Enteritidis beyond the phenotypic level; however, a consensus has not been reached as to which molecular method is best suited for this purpose. In addition, data are lacking on the molecular fingerprinting of serotype Enteritidis from poultry environments in the United Kingdom. This study evaluated the combined use of classical methods (phage typing) with three well-established molecular methods (ribotyping, macrorestriction analysis of genomic DNA, and plasmid profiling) in the assessment of diversity within 104 isolates of serotype Enteritidis from eight unaffiliated poultry farms in England. The most sensitive technique for identifying polymorphism was PstI-SphII ribotyping, distinguishing a total of 22 patterns, 10 of which were found among phage type 4 isolates. Pulsed-field gel electrophoresis of XhaI-digested genomic DNA segregated the isolates into only six types with minor differences between them. In addition, 14 plasmid profiles were found among this population. When all of the typing methods were combined, 54 types of strains were differentiated, and most of the poultry farms presented a variety of strains, which suggests that serotype Enteritidis organisms representing different genomic groups are circulating in England. In conclusion, geographical and animal origins of Salmonella serotype Enteritidis isolates may have a considerable influence on selecting the best typing strategy for individual programs, and a single method cannot be relied on for discriminating between strains.
Resumo:
Climate models are potentially useful tools for addressing human dispersals and demographic change. The Arabian Peninsula is becoming increasingly significant in the story of human dispersals out of Africa during the Late Pleistocene. Although characterised largely by arid environments today, emerging climate records indicate that the peninsula was wetter many times in the past, suggesting that the region may have been inhabited considerably more than hitherto thought. Explaining the origins and spatial distribution of increased rainfall is challenging because palaeoenvironmental research in the region is in an early developmental stage. We address environmental oscillations by assembling and analysing an ensemble of five global climate models (CCSM3, COSMOS, HadCM3, KCM, and NorESM). We focus on precipitation, as the variable is key for the development of lakes, rivers and savannas. The climate models generated here were compared with published palaeoenvironmental data such as palaeolakes, speleothems and alluvial fan records as a means of validation. All five models showed, to varying degrees, that the Arabia Peninsula was significantly wetter than today during the Last Interglacial (130 ka and 126/125 ka timeslices), and that the main source of increased rainfall was from the North African summer monsoon rather than the Indian Ocean monsoon or from Mediterranean climate patterns. Where available, 104 ka (MIS 5c), 56 ka (early MIS 3) and 21 ka (LGM) timeslices showed rainfall was present but not as extensive as during the Last Interglacial. The results favour the hypothesis that humans potentially moved out of Africa and into Arabia on multiple occasions during pluvial phases of the Late Pleistocene.
Resumo:
“Cultural diversity” has become one of the latest buzzwords on the international policymaking scene. It is employed in various contexts – sometimes as a term close to “biological diversity”, at other times as correlated to the “exception culturelle” and most often, as a generic concept that is mobilised to counter the perceived negative effects of economic globalisation. While no one has yet provided a precise definition of what cultural diversity is, what we can observe is the emergence of the notion of cultural diversity as incorporating a distinct set of policy objectives and choices at the global level. These decisions are not confined, as one might have expected, to cultural policymaking, but rather spill over to multiple governance domains because of the complex linkages inherent to the simultaneous pursuit of economic and other societal goals that cultural diversity encompasses and has effects on. Accounting for these intricate interdependencies, the present article clarifies the origins of the concept of cultural diversity as understood in global law and traces its evolution over time. Observing the dynamics of the concept and the surrounding political and legal developments, the article explores its justification and overall impact on the global legal regime, as well as its discrete effects on different domains of policymaking, such as media, intellectual property and culture. While the analysis is legal in essence, the article is meant to speak also to a broader transdisciplinary public. The article is part of the speacial issue on ethnic diversity and cultural pluralism, which is available under the creative commons licence: http://www.mdpi.com/journal/diversity/special_issues/ethnic-diversity/.
Resumo:
Tropical rainforest hunter-gatherer populations worldwide share the pygmy phenotype, or small human body size. The evolutionary history of this phenotype is largely unknown. Here we studied DNA from the Batwa, a rainforest hunter-gatherer population from east central Africa, to identify regions of the Batwa genome that underlie the pygmy phenotype. We then performed population genomic analyses to study the evolution of these regions, including comparisons with the Baka, a west central African rainforest hunter-gatherer population. We conclude that the pygmy phenotype likely arose due to positive natural selection and that it arose possibly multiple times within Africa. These results support longstanding anthropological hypotheses that small body size confers an important selective advantage for human rainforest hunter-gatherers.
Resumo:
The cell cycle-dependent, ordered assembly of protein prereplicative complexes suggests that eukaryotic replication origins determine when genomic replication initiates. By comparison, the factors that determine where replication initiates relative to the sites of prereplicative complex formation are not known. In the human globin gene locus previous work showed that replication initiates at a single site 5′ to the β-globin gene when protein synthesis is inhibited by emetine. The present study has examined the pattern of initiation around the genetically defined β-globin replicator in logarithmically growing HeLa cells, using two PCR-based nascent strand assays. In contrast to the pattern of initiation detected in emetine-treated cells, analysis of the short nascent strands at five positions spanning a 40 kb globin gene region shows that replication initiates at more than one site in non-drug-treated cells. Quantitation of nascent DNA chains confirmed that replication begins at several locations in this domain, including one near the initiation region (IR) identified in emetine-treated cells. However, the abundance of short nascent strands at another initiation site ∼20 kb upstream is ∼4-fold as great as that at the IR. The latter site abuts an early S phase replicating fragment previously defined at low resolution in logarithmically dividing cells.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Molecular investigation of the origin of colour vision has discovered five visual pigment (opsin) genes, all of which are expressed in an agnathan (jawless) fish, the lamprey Geotria australis. Lampreys are extant representatives of an ancient group of vertebrates whose origins are thought to date back to at least the early Cambrian, approximately 540 million years ago [1.]. Phylogenetic analysis has identified the visual pigment opsin genes of G. australis as orthologues of the major classes of vertebrate opsin genes. Therefore, multiple opsin genes must have originated very early in vertebrate evolution, prior to the separation of the jawed and jawless vertebrate lineages, and thereby provided the genetic basis for colour vision in all vertebrate species. The southern hemisphere lamprey Geotria australis (Figure 1A,B) possesses a predominantly cone-based visual system designed for photopic (bright light) vision [2. S.P. Collin, I.C. Potter and C.R. Braekevelt, The ocular morphology of the southern hemisphere lamprey Geotria australis Gray, with special reference to optical specializations and the characterisation and phylogeny of photoreceptor types. Brain Behav. Evol. 54 (1999), pp. 96–111.2. and 3.]. Previous work identified multiple cone types suggesting that the potential for colour vision may have been present in the earliest members of this group. In order to trace the molecular evolution and origins of vertebrate colour vision, we have examined the genetic complement of visual pigment opsins in G. australis.
Resumo:
Exclusive Fishing Zones (EFZs) are a type of place-based management tool often used to mitigate conflicts between fishing sectors by granting fishing rights to one of the sectors. This case study enhances our knowledge of the pre- and post-implementation processes associated with EFZs as well as its consequences for fish stocks and artisanal fishers and their families. The study draws upon interviews with artisanal fishers and key informants related to an EFZ established in 2008 in Colombia (the Chocó-EFZ). The findings of this research indicate that conflicts at sea and on land between artisanal and industrial fisheries triggered the Chocó-EFZ process. Results also show some potential benefits of the Chocó-EFZ including: a) mitigating conflicts between artisanal fishers and industrial shrimpers; b) contributing to the food security of artisanal fishing households and sustaining local fish stocks; c) supporting an existing informal community-based management as well as promoting the development of a co-management regime. Potential negative effects of the Chocó-EFZ include: a) displacement of industrial fishing effort and, b) job loss within the industrial shrimp industry. The findings of this research also indicate that there are multiple factors that jeopardize the effectiveness and continuation of the Chocó-EFZ, some of which include diversity of fisheries, power struggles among stakeholders, and disagreement about exclusive access to fish resources.
Resumo:
Although people frequently pursue multiple goals simultaneously, these goals often conflict with each other. For instance, consumers may have both a healthy eating goal and a goal to have an enjoyable eating experience. In this dissertation, I focus on two sources of enjoyment in eating experiences that may conflict with healthy eating: consuming tasty food (Essay 1) and affiliating with indulging dining companions (Essay 2). In both essays, I examine solutions and strategies that decrease the conflict between healthy eating and these aspects of enjoyment in the eating experience, thereby enabling consumers to resolve such goal conflicts.
Essay 1 focuses on the well-established conflict between having healthy food and having tasty food and introduces a novel product offering (“vice-virtue bundles”) that can help consumers simultaneously address both health and taste goals. Through several experiments, I demonstrate that consumers often choose vice-virtue bundles with small proportions (¼) of vice and that they view such bundles as healthier than but equally tasty as bundles with larger vice proportions, indicating that “healthier” does not always have to equal “less tasty.”
Essay 2 focuses on a conflict between healthy eating and affiliation with indulging dining companions. The first set of experiments provides evidence of this conflict and examine why it arises (Studies 1 to 3). Based on this conflict’s origins, the second set of experiments tests strategies that consumers can use to decrease the conflict between healthy eating and affiliation with an indulging dining companion (Studies 4 and 5), such that they can make healthy food choices while still being liked by an indulging dining companion. Thus, Essay 2 broadens the existing picture of goals that conflict with the healthy eating goal and, together with Essay 1, identifies solutions to such goal conflicts.
Resumo:
Background: The Nme gene family is involved in multiple physiological and pathological processes such as cellular differentiation, development, metastatic dissemination, and cilia functions. Despite the known importance of Nme genes and their use as clinical markers of tumor aggressiveness, the associated cellular mechanisms remain poorly understood. Over the last 20 years, several non-vertebrate model species have been used to investigate Nme functions. However, the evolutionary history of the family remains poorly understood outside the vertebrate lineage. The aim of the study was thus to elucidate the evolutionary history of the Nme gene family in Metazoans. Methodology/Principal Findings: Using a total of 21 eukaryote species including 14 metazoans, the evolutionary history of Nme genes was reconstructed in the metazoan lineage. We demonstrated that the complexity of the Nme gene family, initially thought to be restricted to chordates, was also shared by the metazoan ancestor. We also provide evidence suggesting that the complexity of the family is mainly a eukaryotic innovation, with the exception of Nme8 that is likely to be a choanoflagellate/metazoan innovation. Highly conserved gene structure, genomic linkage, and protein domains were identified among metazoans, some features being also conserved in eukaryotes. When considering the entire Nme family, the starlet sea anemone is the studied metazoan species exhibiting the most conserved gene and protein sequence features with humans. In addition, we were able to show that most of the proteins known to interact with human NME proteins were also found in starlet sea anemone. Conclusion/Significance: Together, our observations further support the association of Nme genes with key cellular functions that have been conserved throughout metazoan evolution. Future investigations of evolutionarily conserved Nme gene functions using the starlet sea anemone could shed new light on a wide variety of key developmental and cellular processes.
Resumo:
The cerebellum is an important site for cortical demyelination in multiple sclerosis, but the functional significance of this finding is not fully understood. To evaluate the clinical and cognitive impact of cerebellar grey-matter pathology in multiple sclerosis patients. Forty-two relapsing-remitting multiple sclerosis patients and 30 controls underwent clinical assessment including the Multiple Sclerosis Functional Composite, Expanded Disability Status Scale (EDSS) and cerebellar functional system (FS) score, and cognitive evaluation, including the Paced Auditory Serial Addition Test (PASAT) and the Symbol-Digit Modalities Test (SDMT). Magnetic resonance imaging was performed with a 3T scanner and variables of interest were: brain white-matter and cortical lesion load, cerebellar intracortical and leukocortical lesion volumes, and brain cortical and cerebellar white-matter and grey-matter volumes. After multivariate analysis high burden of cerebellar intracortical lesions was the only predictor for the EDSS (p<0.001), cerebellar FS (p = 0.002), arm function (p = 0.049), and for leg function (p<0.001). Patients with high burden of cerebellar leukocortical lesions had lower PASAT scores (p = 0.013), while patients with greater volumes of cerebellar intracortical lesions had worse SDMT scores (p = 0.015). Cerebellar grey-matter pathology is widely present and contributes to clinical dysfunction in relapsing-remitting multiple sclerosis patients, independently of brain grey-matter damage.