995 resultados para MSW disposal site
Resumo:
New dredge-disposal techniques may serve the dual role of aiding sand by-passing across coastal inlets, and beach nourishment, provided the dredged sediments placed seaward of the surf zone move shoreward into that zone. During the summer of 1976, 26,750 cubic meters of relatively coarse sediment was dredged from New River Inlet, North Carolina, moved down coast by a split-hull barge, and placed in a 215-meter coastal reach between the 2- and 4-meter depth contours. Bathymetric changes on the disposal piles and in the adjacent beach and nearshore area were studied for a 13-week period (August to November 1976) to determine the modification of the surrounding beach and nearshore profile, and the net transport direction of the disposal sediment. The sediment piles initially created a local shoal zone with minimum depths of 0.6 meter. Disposal sediment was coarser (Mn = 0.49 millimeter) than the native sand at the disposal site (Mn = 0.14 millimeter) and coarser than the composite mean grain size of the entire profile (Mn = 0.21 millimeter). Shoaling and breaking waves caused rapid erosion of the pile tops and a gradual coalescing of the piles to form a disposal bar located seaward (= 90 meters) of a naturally occurring surf zone bar. As the disposal bar relief was reduced, the disposal bar-associated breaker zone was restricted to low tide times or periods of high wave conditions.
Resumo:
Coal fired power generation will continue to provide energy to the world for the foreseeable future. However, this energy use is a significant contributor to increased atmospheric CO2 concentration and, hence, global warming. Capture and disposal Of CO2 has received increased R&D attention in the last decade as the technology promises to be the most cost effective for large scale reductions in CO2 emissions. This paper addresses CO2 transport via pipeline from capture site to disposal site, in terms of system optimization, energy efficiency and overall economics. Technically, CO2 can be transported through pipelines in the form of a gas, a supercritical. fluid or in the subcooled liquid state. Operationally, most CO2 pipelines used for enhanced oil recovery transport CO2 as a supercritical fluid. In this paper, supercritical fluid and subcooled liquid transport are examined and compared, including their impacts on energy efficiency and cost. Using a commercially available process simulator, ASPEN PLUS 10.1, the results show that subcooled liquid transport maximizes the energy efficiency and minimizes the Cost Of CO2 transport over long distances under both isothermal and adiabatic conditions. Pipeline transport of subcooled liquid CO2 can be ideally used in areas of cold climate or by burying and insulating the pipeline. In very warm climates, periodic refrigeration to cool the CO2 below its critical point of 31.1 degrees C, may prove economical. Simulations have been used to determine the maximum safe pipeline distances to subsequent booster stations as a function of inlet pressure, environmental temperature and ground level heat flux conditions. (c) 2005 Published by Elsevier Ltd.
Resumo:
Leachates are effluent produced by decomposition of solid waste, they have complex composition and can be highly toxic. Therefore such percolated liquid should be collected and treated properly to avoid environmental contamination of soil and of water bodies. The objective of this study was to evaluate the toxicity through ecotoxicological tests with Ceriodaphnia dubia (Cladocera - Crustacea) of percolated liquids generated in two different systems of municipal solid waste (MSW) disposal in the city of Natal/ RN: A Sanitary Landfill in the Metropolitan Region of Natal/ RN, and in a dump off area. Furthermore, it was evaluated the possible contamination of the underground water of the dump off area. Two monthly samples were taken at four points between the months of May/2009 and January/2010. The Point "A" corresponds to the end of the pond leachate treatment in ASRMN; The Point "B" corresponds to a containment pond at the dump. The Point "C" is an area near one of the cells of the dump off area where the leachate outcrops; The Point "D" stands for an underground water well at the area. The last point, called "E" was sampled only once and corresponds to the slurry produced by temporary accumulation of solid waste in the open area of the dump. The ecotoxicological tests, acute and chronic, followed the ABNT 13373/2005 rules, with some modifications. The samples were characterized by measuring the pH number, the dissolved oxygen (DO), the salinity, BOD5, COD, Cd, Cu, Pb, Cr, Fe, Mg, Ni, and Zn. At Point A, the average number of EC50-48h ranged between 1.0% and 2.77% (v/v), showing a high toxicity of the leachate to C.dubia in all months. To this point, positive correlations were found between the EC50- 48 with precipitation. Negative correlations were found between the EC50- 48h with salinity. At point B there was no response of the acute exposure of organisms to the test samples. At point C the EC50-48h ranged from 17.68% to 35.36% in just two months of the five ones analyzed, not correlated meaning. Point D, the EC50-48h level ranged between 12.31% and 71.27%, showed a negative correlation with, only, precipitation. Although it was observed toxicity of underground water in the Landfill Area, there was no evidence of water contamination by leachate, however, due to the toxic character of this water, additional tests should be conducted to confirm the quality of water that is used for human supply. At point E there was no acute toxicity. These results support the dangers of inappropriate disposal of MSW to water bodies due to the high toxicity of the leachate produced highlighting the necessity of places of safe confinement and a treatment system more effective to it
Resumo:
The submarine sewage outfall of Santos (SSOS) is situated in the Santos Bay (São Paulo, Brazil) and is potentially a significant source of contaminants to the adjacent marine ecosystem. The present study aimed to assess the influence of SSOS on the sediment toxicity and contamination at Santos Bay. At the disposal site, sediments tended to be finer, organically richer and exhibited higher levels of surfactants and metals, sometimes exceeding the Threshold Effect Level values. The SSOS influence was more evident toward the East, where the sediments exhibited higher levels of TOC, total S and metals during the summer 2000 sampling campaign. Sediment toxicity to amphipods was consistently detected in four of the five stations studied. Amphipod survival tended to correlate negatively to Hg, total N and % mud. This work provides evidence that the SSOS discharge affects the quality of sediments from Santos Bay, and that control procedures are warranted. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Background, aim, and scope Contaminated sediments are a worldwide problem, and mobilization of contaminants is one of the most critical issues in environmental risk assessment insofar as dredging projects are concerned. The investigation of how toxic compounds are mobilized during dredging operations in the channel of the Port of Santos, Brazil, was conducted in an attempt to assess changes in the bioavailability and toxicity of these contaminants.Materials and methods Bulk sediment samples and their interstitial waters and elutriates were subjected to chemical evaluation and ecotoxicological assessment. Samples were collected from the channel before dredging, from the dredge's hopper, and from the disposal site and its surroundings.Results The results indicate that the bulk sediments from the dredging site are contaminated moderately with As, Pb, and Zn and severely with Hg, and that polycyclic aromatic hydrocarbon (PAH) concentrations are relatively high. Our results also show a 50% increase in PAH concentrations in suspended solids in the water collected from the hopper dredge. This finding is of great concern, since it refers to the dredge overflow water which is pumped back into the ecosystem. Acute toxicity tests on bulk sediment using the amphipod Tiburonella viscana showed no toxicity, while chronic tests with the sea urchin Lytechinus variegatus showed toxicity in the interstitial waters and elutriates. Results are compared with widely used sediment quality guidelines and with a sediment quality assessment scheme based on various lines of evidence.Conclusions The data presented here indicate that the sediments collected in this port show a certain degree of contamination, especially those from the inner part of the channel. The classification established in this study indicated that sediments from the dredged channel are impacted detrimentally and that sea disposal may disperse contaminants. According to this classification, the sediments are inappropriate for disposal at sea. It should be emphasized that the poor quality of fine sediments discharged from the hopper dredge in the overflow process can recontaminate the environment.Recommendations and perspectives These findings will help to underpin improved planning of management strategies for dredging operations and sediment disposal in Brazil and other countries.
Resumo:
Leachates are effluent produced by decomposition of solid waste, they have complex composition and can be highly toxic. Therefore such percolated liquid should be collected and treated properly to avoid environmental contamination of soil and of water bodies. The objective of this study was to evaluate the toxicity through ecotoxicological tests with Ceriodaphnia dubia (Cladocera - Crustacea) of percolated liquids generated in two different systems of municipal solid waste (MSW) disposal in the city of Natal/ RN: A Sanitary Landfill in the Metropolitan Region of Natal/ RN, and in a dump off area. Furthermore, it was evaluated the possible contamination of the underground water of the dump off area. Two monthly samples were taken at four points between the months of May/2009 and January/2010. The Point "A" corresponds to the end of the pond leachate treatment in ASRMN; The Point "B" corresponds to a containment pond at the dump. The Point "C" is an area near one of the cells of the dump off area where the leachate outcrops; The Point "D" stands for an underground water well at the area. The last point, called "E" was sampled only once and corresponds to the slurry produced by temporary accumulation of solid waste in the open area of the dump. The ecotoxicological tests, acute and chronic, followed the ABNT 13373/2005 rules, with some modifications. The samples were characterized by measuring the pH number, the dissolved oxygen (DO), the salinity, BOD5, COD, Cd, Cu, Pb, Cr, Fe, Mg, Ni, and Zn. At Point A, the average number of EC50-48h ranged between 1.0% and 2.77% (v/v), showing a high toxicity of the leachate to C.dubia in all months. To this point, positive correlations were found between the EC50- 48 with precipitation. Negative correlations were found between the EC50- 48h with salinity. At point B there was no response of the acute exposure of organisms to the test samples. At point C the EC50-48h ranged from 17.68% to 35.36% in just two months of the five ones analyzed, not correlated meaning. Point D, the EC50-48h level ranged between 12.31% and 71.27%, showed a negative correlation with, only, precipitation. Although it was observed toxicity of underground water in the Landfill Area, there was no evidence of water contamination by leachate, however, due to the toxic character of this water, additional tests should be conducted to confirm the quality of water that is used for human supply. At point E there was no acute toxicity. These results support the dangers of inappropriate disposal of MSW to water bodies due to the high toxicity of the leachate produced highlighting the necessity of places of safe confinement and a treatment system more effective to it
Resumo:
Introducción: La implicación social dentro de la problemática ambiental, establece una relación causal entre hábitos e impacto ambiental; aspectos del comportamiento humano tales como la conveniencia, familiaridad, presión social y actitud, nos permiten realizar un acercamiento acerca de la decisión de reciclar o no en un hogar. Objetivo: identificar los factores ambientales asociados con el manejo de residuos domésticos entre los miembros de una comunidad residencial en la ciudad de Bogotá. Materiales y métodos: Se realizó un estudio transversal realizado a 200 personas de una comunidad residencial. La evaluación de la conducta pro-ambiental se llevó a cabo por medio de la utilización de la Escala del Comportamiento Pro-ambiental desarrollada por Corral-Verdugo unida a la escala de Reciclaje de Sidique. Para el tratamiento estadístico se empleó el análisis de regresión lineal múltiple. Resultados: La mayoría de los encuestados fueron hombres (55%), con una mediana de edad de 37,5 años. Más de la mitad tenía por lo menos formación en pregrado (53%), el 55,5% contaban con un empleo al momento de la entrevista, cerca del 50% de las personas refirieron tener casa propia y la mediana del tamaño de las mismas fue de 80 m2. De los aspectos sociodemográficos, el tipo de vivienda, sexo y edad, estuvieron relacionados con los factores ambientales pro reciclaje. Mientras que las conductas proambientales relacionadas fueron: altruismo, frugalidad, conducta ecológica general, indignación y aprecio por la naturaleza. Conclusiones: Las conductas proambientales Altruismo, Frugalidad, Conducta Ecológica, Indignación y Aprecio por lo natural, están relacionadas con la intención de reciclar. Para futuras investigaciones es necesario constatar la realización del comportamiento proambiental, para aseverar de manera irrebatible que las dimensiones analizadas pueden soportar una acción real y no un auto reporte de una conducta.
Resumo:
Includes bibliographical references.
Resumo:
Bibliography: p. 222-229.
Resumo:
"August 16, 1995."
Resumo:
"December 19, 1996."
Resumo:
"December 19, 1996."
Resumo:
Bomb technicians perform their work while encapsulated in explosive ordnance disposal (EOD) suits. Designed primarily for safety, these suits have an unintended consequence of impairing the body’s natural mechanisms for heat dissipation. Purpose: To quantify the heat strain encountered during an EOD operational scenario in the tropical north of Australia. Methods: All active police male bomb technicians, located in a tropical region of Australia (n=4, experience 7 ± 2.1 yrs, age 34 ± 2 yrs, height 182.3 ± 5.4 cm, body mass 95 ± 4 kg, VO2max 46 ± 5.7 ml.kg-1.min-1) undertook an operational scenario wearing the Med-Eng EOD 9 suit and helmet (~32 kg). The climatic conditions ranged between 27.1–31.8°C ambient temperature, 66-88% relative humidity, and 30.7-34.3°C wet bulb globe temperature. The scenario involved searching a two story non air-conditioned building for a target; carrying and positioning equipment for taking an X-ray; carrying and positioning equipment to disrupt the target; and finally clearing the site. Core temperature and heart rate were continuously monitored, and were used to calculate a physiological strain index (PSI). Urine specific gravity (USG) assessed hydration status and heat associated symptomology were also recorded. Results: The scenario was completed in 121 ± 22 mins (23.4 ± 0.4% work, 76.5 ± 0.4% rest/recovery). Maximum core temperature (38.4 ± 0.2°C), heart rate (173 ± 5.4 bpm, 94 ± 3.3% max), PSI (7.1 ± 0.4) and USG (1.031 ± 0.002) were all elevated after the simulated operation. Heat associated symptomology highlighted that moderate-severe levels of fatigue and thirst were universally experienced, muscle weakness and heat sensations experienced by 75%, and one bomb technician reported confusion and light-headedness. Conclusion: All bomb technicians demonstrated moderate-high levels of heat strain, evidenced by elevated heart rate, core body temperature and PSI. Severe levels of dehydration and noteworthy heat-related symptoms further highlight the risks to health and safety faced by bomb technicians operating in tropical locations.
Resumo:
A new rock mass classification scheme, the Host Rock Classification system (HRC-system) has been developed for evaluating the suitability of volumes of rock mass for the disposal of high-level nuclear waste in Precambrian crystalline bedrock. To support the development of the system, the requirements of host rock to be used for disposal have been studied in detail and the significance of the various rock mass properties have been examined. The HRC-system considers both the long-term safety of the repository and the constructability in the rock mass. The system is specific to the KBS-3V disposal concept and can be used only at sites that have been evaluated to be suitable at the site scale. By using the HRC-system, it is possible to identify potentially suitable volumes within the site at several different scales (repository, tunnel and canister scales). The selection of the classification parameters to be included in the HRC-system is based on an extensive study on the rock mass properties and their various influences on the long-term safety, the constructability and the layout and location of the repository. The parameters proposed for the classification at the repository scale include fracture zones, strength/stress ratio, hydraulic conductivity and the Groundwater Chemistry Index. The parameters proposed for the classification at the tunnel scale include hydraulic conductivity, Q´ and fracture zones and the parameters proposed for the classification at the canister scale include hydraulic conductivity, Q´, fracture zones, fracture width (aperture + filling) and fracture trace length. The parameter values will be used to determine the suitability classes for the volumes of rock to be classified. The HRC-system includes four suitability classes at the repository and tunnel scales and three suitability classes at the canister scale and the classification process is linked to several important decisions regarding the location and acceptability of many components of the repository at all three scales. The HRC-system is, thereby, one possible design tool that aids in locating the different repository components into volumes of host rock that are more suitable than others and that are considered to fulfil the fundamental requirements set for the repository host rock. The generic HRC-system, which is the main result of this work, is also adjusted to the site-specific properties of the Olkiluoto site in Finland and the classification procedure is demonstrated by a test classification using data from Olkiluoto. Keywords: host rock, classification, HRC-system, nuclear waste disposal, long-term safety, constructability, KBS-3V, crystalline bedrock, Olkiluoto