833 resultados para MOTION-BASED ESTIMATION
Resumo:
El principal objetivo de este trabajo es proporcionar una solución en tiempo real basada en visión estéreo o monocular precisa y robusta para que un vehículo aéreo no tripulado (UAV) sea autónomo en varios tipos de aplicaciones UAV, especialmente en entornos abarrotados sin señal GPS. Este trabajo principalmente consiste en tres temas de investigación de UAV basados en técnicas de visión por computador: (I) visual tracking, proporciona soluciones efectivas para localizar visualmente objetos de interés estáticos o en movimiento durante el tiempo que dura el vuelo del UAV mediante una aproximación adaptativa online y una estrategia de múltiple resolución, de este modo superamos los problemas generados por las diferentes situaciones desafiantes, tales como cambios significativos de aspecto, iluminación del entorno variante, fondo del tracking embarullado, oclusión parcial o total de objetos, variaciones rápidas de posición y vibraciones mecánicas a bordo. La solución ha sido utilizada en aterrizajes autónomos, inspección de plataformas mar adentro o tracking de aviones en pleno vuelo para su detección y evasión; (II) odometría visual: proporciona una solución eficiente al UAV para estimar la posición con 6 grados de libertad (6D) usando únicamente la entrada de una cámara estéreo a bordo del UAV. Un método Semi-Global Blocking Matching (SGBM) eficiente basado en una estrategia grueso-a-fino ha sido implementada para una rápida y profunda estimación del plano. Además, la solución toma provecho eficazmente de la información 2D y 3D para estimar la posición 6D, resolviendo de esta manera la limitación de un punto de referencia fijo en la cámara estéreo. Una robusta aproximación volumétrica de mapping basada en el framework Octomap ha sido utilizada para reconstruir entornos cerrados y al aire libre bastante abarrotados en 3D con memoria y errores correlacionados espacialmente o temporalmente; (III) visual control, ofrece soluciones de control prácticas para la navegación de un UAV usando Fuzzy Logic Controller (FLC) con la estimación visual. Y el framework de Cross-Entropy Optimization (CEO) ha sido usado para optimizar el factor de escala y la función de pertenencia en FLC. Todas las soluciones basadas en visión en este trabajo han sido probadas en test reales. Y los conjuntos de datos de imágenes reales grabados en estos test o disponibles para la comunidad pública han sido utilizados para evaluar el rendimiento de estas soluciones basadas en visión con ground truth. Además, las soluciones de visión presentadas han sido comparadas con algoritmos de visión del estado del arte. Los test reales y los resultados de evaluación muestran que las soluciones basadas en visión proporcionadas han obtenido rendimientos en tiempo real precisos y robustos, o han alcanzado un mejor rendimiento que aquellos algoritmos del estado del arte. La estimación basada en visión ha ganado un rol muy importante en controlar un UAV típico para alcanzar autonomía en aplicaciones UAV. ABSTRACT The main objective of this dissertation is providing real-time accurate robust monocular or stereo vision-based solution for Unmanned Aerial Vehicle (UAV) to achieve the autonomy in various types of UAV applications, especially in GPS-denied dynamic cluttered environments. This dissertation mainly consists of three UAV research topics based on computer vision technique: (I) visual tracking, it supplys effective solutions to visually locate interesting static or moving object over time during UAV flight with on-line adaptivity approach and multiple-resolution strategy, thereby overcoming the problems generated by the different challenging situations, such as significant appearance change, variant surrounding illumination, cluttered tracking background, partial or full object occlusion, rapid pose variation and onboard mechanical vibration. The solutions have been utilized in autonomous landing, offshore floating platform inspection and midair aircraft tracking for sense-and-avoid; (II) visual odometry: it provides the efficient solution for UAV to estimate the 6 Degree-of-freedom (6D) pose using only the input of stereo camera onboard UAV. An efficient Semi-Global Blocking Matching (SGBM) method based on a coarse-to-fine strategy has been implemented for fast depth map estimation. In addition, the solution effectively takes advantage of both 2D and 3D information to estimate the 6D pose, thereby solving the limitation of a fixed small baseline in the stereo camera. A robust volumetric occupancy mapping approach based on the Octomap framework has been utilized to reconstruct indoor and outdoor large-scale cluttered environments in 3D with less temporally or spatially correlated measurement errors and memory; (III) visual control, it offers practical control solutions to navigate UAV using Fuzzy Logic Controller (FLC) with the visual estimation. And the Cross-Entropy Optimization (CEO) framework has been used to optimize the scaling factor and the membership function in FLC. All the vision-based solutions in this dissertation have been tested in real tests. And the real image datasets recorded from these tests or available from public community have been utilized to evaluate the performance of these vision-based solutions with ground truth. Additionally, the presented vision solutions have compared with the state-of-art visual algorithms. Real tests and evaluation results show that the provided vision-based solutions have obtained real-time accurate robust performances, or gained better performance than those state-of-art visual algorithms. The vision-based estimation has played a critically important role for controlling a typical UAV to achieve autonomy in the UAV application.
Resumo:
The ability to view and interact with 3D models has been happening for a long time. However, vision-based 3D modeling has only seen limited success in applications, as it faces many technical challenges. Hand-held mobile devices have changed the way we interact with virtual reality environments. Their high mobility and technical features, such as inertial sensors, cameras and fast processors, are especially attractive for advancing the state of the art in virtual reality systems. Also, their ubiquity and fast Internet connection open a path to distributed and collaborative development. However, such path has not been fully explored in many domains. VR systems for real world engineering contexts are still difficult to use, especially when geographically dispersed engineering teams need to collaboratively visualize and review 3D CAD models. Another challenge is the ability to rendering these environments at the required interactive rates and with high fidelity. In this document it is presented a virtual reality system mobile for visualization, navigation and reviewing large scale 3D CAD models, held under the CEDAR (Collaborative Engineering Design and Review) project. It’s focused on interaction using different navigation modes. The system uses the mobile device's inertial sensors and camera to allow users to navigate through large scale models. IT professionals, architects, civil engineers and oil industry experts were involved in a qualitative assessment of the CEDAR system, in the form of direct user interaction with the prototypes and audio-recorded interviews about the prototypes. The lessons learned are valuable and are presented on this document. Subsequently it was prepared a quantitative study on the different navigation modes to analyze the best mode to use it in a given situation.
Resumo:
This dissertation aims to improve the performance of existing assignment-based dynamic origin-destination (O-D) matrix estimation models to successfully apply Intelligent Transportation Systems (ITS) strategies for the purposes of traffic congestion relief and dynamic traffic assignment (DTA) in transportation network modeling. The methodology framework has two advantages over the existing assignment-based dynamic O-D matrix estimation models. First, it combines an initial O-D estimation model into the estimation process to provide a high confidence level of initial input for the dynamic O-D estimation model, which has the potential to improve the final estimation results and reduce the associated computation time. Second, the proposed methodology framework can automatically convert traffic volume deviation to traffic density deviation in the objective function under congested traffic conditions. Traffic density is a better indicator for traffic demand than traffic volume under congested traffic condition, thus the conversion can contribute to improving the estimation performance. The proposed method indicates a better performance than a typical assignment-based estimation model (Zhou et al., 2003) in several case studies. In the case study for I-95 in Miami-Dade County, Florida, the proposed method produces a good result in seven iterations, with a root mean square percentage error (RMSPE) of 0.010 for traffic volume and a RMSPE of 0.283 for speed. In contrast, Zhou's model requires 50 iterations to obtain a RMSPE of 0.023 for volume and a RMSPE of 0.285 for speed. In the case study for Jacksonville, Florida, the proposed method reaches a convergent solution in 16 iterations with a RMSPE of 0.045 for volume and a RMSPE of 0.110 for speed, while Zhou's model needs 10 iterations to obtain the best solution, with a RMSPE of 0.168 for volume and a RMSPE of 0.179 for speed. The successful application of the proposed methodology framework to real road networks demonstrates its ability to provide results both with satisfactory accuracy and within a reasonable time, thus establishing its potential usefulness to support dynamic traffic assignment modeling, ITS systems, and other strategies.
Resumo:
X-ray computed tomography (CT) is a non-invasive medical imaging technique that generates cross-sectional images by acquiring attenuation-based projection measurements at multiple angles. Since its first introduction in the 1970s, substantial technical improvements have led to the expanding use of CT in clinical examinations. CT has become an indispensable imaging modality for the diagnosis of a wide array of diseases in both pediatric and adult populations [1, 2]. Currently, approximately 272 million CT examinations are performed annually worldwide, with nearly 85 million of these in the United States alone [3]. Although this trend has decelerated in recent years, CT usage is still expected to increase mainly due to advanced technologies such as multi-energy [4], photon counting [5], and cone-beam CT [6].
Despite the significant clinical benefits, concerns have been raised regarding the population-based radiation dose associated with CT examinations [7]. From 1980 to 2006, the effective dose from medical diagnostic procedures rose six-fold, with CT contributing to almost half of the total dose from medical exposure [8]. For each patient, the risk associated with a single CT examination is likely to be minimal. However, the relatively large population-based radiation level has led to enormous efforts among the community to manage and optimize the CT dose.
As promoted by the international campaigns Image Gently and Image Wisely, exposure to CT radiation should be appropriate and safe [9, 10]. It is thus a responsibility to optimize the amount of radiation dose for CT examinations. The key for dose optimization is to determine the minimum amount of radiation dose that achieves the targeted image quality [11]. Based on such principle, dose optimization would significantly benefit from effective metrics to characterize radiation dose and image quality for a CT exam. Moreover, if accurate predictions of the radiation dose and image quality were possible before the initiation of the exam, it would be feasible to personalize it by adjusting the scanning parameters to achieve a desired level of image quality. The purpose of this thesis is to design and validate models to quantify patient-specific radiation dose prospectively and task-based image quality. The dual aim of the study is to implement the theoretical models into clinical practice by developing an organ-based dose monitoring system and an image-based noise addition software for protocol optimization.
More specifically, Chapter 3 aims to develop an organ dose-prediction method for CT examinations of the body under constant tube current condition. The study effectively modeled the anatomical diversity and complexity using a large number of patient models with representative age, size, and gender distribution. The dependence of organ dose coefficients on patient size and scanner models was further evaluated. Distinct from prior work, these studies use the largest number of patient models to date with representative age, weight percentile, and body mass index (BMI) range.
With effective quantification of organ dose under constant tube current condition, Chapter 4 aims to extend the organ dose prediction system to tube current modulated (TCM) CT examinations. The prediction, applied to chest and abdominopelvic exams, was achieved by combining a convolution-based estimation technique that quantifies the radiation field, a TCM scheme that emulates modulation profiles from major CT vendors, and a library of computational phantoms with representative sizes, ages, and genders. The prospective quantification model is validated by comparing the predicted organ dose with the dose estimated based on Monte Carlo simulations with TCM function explicitly modeled.
Chapter 5 aims to implement the organ dose-estimation framework in clinical practice to develop an organ dose-monitoring program based on a commercial software (Dose Watch, GE Healthcare, Waukesha, WI). In the first phase of the study we focused on body CT examinations, and so the patient’s major body landmark information was extracted from the patient scout image in order to match clinical patients against a computational phantom in the library. The organ dose coefficients were estimated based on CT protocol and patient size as reported in Chapter 3. The exam CTDIvol, DLP, and TCM profiles were extracted and used to quantify the radiation field using the convolution technique proposed in Chapter 4.
With effective methods to predict and monitor organ dose, Chapters 6 aims to develop and validate improved measurement techniques for image quality assessment. Chapter 6 outlines the method that was developed to assess and predict quantum noise in clinical body CT images. Compared with previous phantom-based studies, this study accurately assessed the quantum noise in clinical images and further validated the correspondence between phantom-based measurements and the expected clinical image quality as a function of patient size and scanner attributes.
Chapter 7 aims to develop a practical strategy to generate hybrid CT images and assess the impact of dose reduction on diagnostic confidence for the diagnosis of acute pancreatitis. The general strategy is (1) to simulate synthetic CT images at multiple reduced-dose levels from clinical datasets using an image-based noise addition technique; (2) to develop quantitative and observer-based methods to validate the realism of simulated low-dose images; (3) to perform multi-reader observer studies on the low-dose image series to assess the impact of dose reduction on the diagnostic confidence for multiple diagnostic tasks; and (4) to determine the dose operating point for clinical CT examinations based on the minimum diagnostic performance to achieve protocol optimization.
Chapter 8 concludes the thesis with a summary of accomplished work and a discussion about future research.
Resumo:
Os hábitos de actividade física (AF) podem-se alterar consideravelmente durante a gravidez. O sucesso das estratégias que visam promover a AF das gestantes depende do modelo motivacional implementado. Objectivo: Determinar se o Modelo Transteórico de Mudança de Comportamento (MTMC) utilizado no Projecto “Mães em Movimento” é eficaz na promoção de mudança de comportamentos nas grávidas no sentido de aumentar os níveis de AF. Metodologia: Foi realizado um estudo, experimental do tipo Intervenção Comunitária, numa amostra consecutiva constituída por 20 grávidas que faziam Preparação para a Parentalidade (PP) em dois Centros de Saúde. O grupo experimental, constituído por 10 grávidas, além da preparação, participou no projecto “Mães em Movimento” baseado no MTMC. O grupo de controlo seguiu o programa de PP. Os instrumentos utilizados para 1ª avaliação foram: o Questionário de Actividade Física para Gestantes, a Escala de Estados de Mudança de Comportamento para o Exercício, o Questionário de Auto-Eficácia, o Behavioural Regulation in Exercise Questionnaire-2 e um Questionário de Hábitos e Conhecimentos. Resultados: Após a implementação do projecto “Mães em Movimento” no grupo experimental, 100% das mulheres referiram praticar AF regular. O gasto energético semanal em actividades desportivas/exercício aumentou aproximadamente 4 vezes (p=0,002) desde a 1ª avaliação até à 2ª avaliação. Verificou-se uma tendência de deslocação dos estadios de mudança de comportamento inactivos para os activos (p=0,007) e a motivação intrínseca aumentou significativamente (p=0,018). Observou-se, também, um aumento dos conhecimentos relativos a diversas dimensões da AF na gravidez (p=0,002). Conclusão: Neste estudo, o MTMC revelou-se um modelo eficaz na promoção de hábitos de AF em grávidas, realçando que o sucesso da mudança de comportamento é influenciado pela motivação individual, pelo empowerment (transferência de conhecimentos e competências) e pelas oportunidades criadas.
Resumo:
Objectivo: Determinar se o Modelo Transteórico de Mudança de Comportamento (MTMC) é eficaz na promoção da actividade física (AF) nas grávidas. Metodologia: O grupo experimental (GE) participou no projecto “Mães em Movimento” baseado no MTMC. Aplicou-se o Questionário de AF para Gestantes, Escala de Estados de Mudança, Behavioural Regulation in Exercise Questionnaire e Questionário de Conhecimentos. Resultados: Na 2ª avaliação, no GE, todas as grávidas referiram praticar AF. A motivação intrínseca e os conhecimentos aumentaram Conclusão: O MTMC revelou-se um modelo eficaz na promoção da AF em grávidas.
Resumo:
In this paper we develop methods for estimation and forecasting in large timevarying parameter vector autoregressive models (TVP-VARs). To overcome computational constraints with likelihood-based estimation of large systems, we rely on Kalman filter estimation with forgetting factors. We also draw on ideas from the dynamic model averaging literature and extend the TVP-VAR so that its dimension can change over time. A final extension lies in the development of a new method for estimating, in a time-varying manner, the parameter(s) of the shrinkage priors commonly-used with large VARs. These extensions are operationalized through the use of forgetting factor methods and are, thus, computationally simple. An empirical application involving forecasting inflation, real output, and interest rates demonstrates the feasibility and usefulness of our approach.
Resumo:
BACKGROUND: Knowledge of the number of recent HIV infections is important for epidemiologic surveillance. Over the past decade approaches have been developed to estimate this number by testing HIV-seropositive specimens with assays that discriminate the lower concentration and avidity of HIV antibodies in early infection. We have investigated whether this "recency" information can also be gained from an HIV confirmatory assay. METHODS AND FINDINGS: The ability of a line immunoassay (INNO-LIA HIV I/II Score, Innogenetics) to distinguish recent from older HIV-1 infection was evaluated in comparison with the Calypte HIV-1 BED Incidence enzyme immunoassay (BED-EIA). Both tests were conducted prospectively in all HIV infections newly diagnosed in Switzerland from July 2005 to June 2006. Clinical and laboratory information indicative of recent or older infection was obtained from physicians at the time of HIV diagnosis and used as the reference standard. BED-EIA and various recency algorithms utilizing the antibody reaction to INNO-LIA's five HIV-1 antigen bands were evaluated by logistic regression analysis. A total of 765 HIV-1 infections, 748 (97.8%) with complete test results, were newly diagnosed during the study. A negative or indeterminate HIV antibody assay at diagnosis, symptoms of primary HIV infection, or a negative HIV test during the past 12 mo classified 195 infections (26.1%) as recent (< or = 12 mo). Symptoms of CDC stages B or C classified 161 infections as older (21.5%), and 392 patients with no symptoms remained unclassified. BED-EIA ruled 65% of the 195 recent infections as recent and 80% of the 161 older infections as older. Two INNO-LIA algorithms showed 50% and 40% sensitivity combined with 95% and 99% specificity, respectively. Estimation of recent infection in the entire study population, based on actual results of the three tests and adjusted for a test's sensitivity and specificity, yielded 37% for BED-EIA compared to 35% and 33% for the two INNO-LIA algorithms. Window-based estimation with BED-EIA yielded 41% (95% confidence interval 36%-46%). CONCLUSIONS: Recency information can be extracted from INNO-LIA-based confirmatory testing at no additional costs. This method should improve epidemiologic surveillance in countries that routinely use INNO-LIA for HIV confirmation.
Resumo:
Genetic diversity of contemporary domesticated species is shaped by both natural and human-driven processes. However, until now, little is known about how domestication has imprinted the variation of fruit tree species. In this study, we reconstruct the recent evolutionary history of the domesticated almond tree, Prunus dulcis, around the Mediterranean basin, using a combination of nuclear and chloroplast microsatellites [i.e. simple sequence repeat (SSRs)] to investigate patterns of genetic diversity. Whereas conservative chloroplast SSRs show a widespread haplotype and rare locally distributed variants, nuclear SSRs show a pattern of isolation by distance with clines of diversity from the East to the West of the Mediterranean basin, while Bayesian genetic clustering reveals a substantial longitudinal genetic structure. Both kinds of markers thus support a single domestication event, in the eastern side of the Mediterranean basin. In addition, model-based estimation of the timing of genetic divergence among those clusters is estimated sometime during the Holocene, a result that is compatible with human-mediated dispersal of almond tree out of its centre of origin. Still, the detection of region-specific alleles suggests that gene flow from relictual wild preglacial populations (in North Africa) or from wild counterparts (in the Near East) could account for a fraction of the diversity observed.
Resumo:
This paper aims at illustrating some applications of Finite Random Set (FRS) theory to the design and analysis of wireless communication receivers, and at pointing out similarities and differences between this scenario and that pertaining to multi-target tracking, where the use of FRS has been traditionally advocated. Two case studies are considered, l.e., multiuser detection in a dynamic environment, and multicarrier (OFDM) transmission on a frequency-selective channel. Detector designand performance evaluation are discussed, along with the advantages of importing FRS-based estimation techniques to the context of wireless communications.
Resumo:
Centrifugal pumps are widely used in industrial and municipal applications, and they are an important end-use application of electric energy. However, in many cases centrifugal pumps operate with a significantly lower energy efficiency than they actually could, which typically has an increasing effect on the pump energy consumption and the resulting energy costs. Typical reasons for this are the incorrect dimensioning of the pumping system components and inefficiency of the applied pump control method. Besides the increase in energy costs, an inefficient operation may increase the risk of a pump failure and thereby the maintenance costs. In the worst case, a pump failure may lead to a process shutdown accruing additional costs. Nowadays, centrifugal pumps are often controlled by adjusting their rotational speed, which affects the resulting flow rate and output pressure of the pumped fluid. Typically, the speed control is realised with a frequency converter that allows the control of the rotational speed of an induction motor. Since a frequency converter can estimate the motor rotational speed and shaft torque without external measurement sensors on the motor shaft, it also allows the development and use of sensorless methods for the estimation of the pump operation. Still today, the monitoring of pump operation is based on additional measurements and visual check-ups, which may not be applicable to determine the energy efficiency of the pump operation. This doctoral thesis concentrates on the methods that allow the use of a frequency converter as a monitoring and analysis device for a centrifugal pump. Firstly, the determination of energy-efficiency- and reliability-based limits for the recommendable operating region of a variable-speed-driven centrifugal pump is discussed with a case study for the laboratory pumping system. Then, three model-based estimation methods for the pump operating location are studied, and their accuracy is determined by laboratory tests. In addition, a novel method to detect the occurrence of cavitation or flow recirculation in a centrifugal pump by a frequency converter is introduced. Its sensitivity compared with known cavitation detection methods is evaluated, and its applicability is verified by laboratory measurements for three different pumps and by using two different frequency converters. The main focus of this thesis is on the radial flow end-suction centrifugal pumps, but the studied methods can also be feasible with mixed and axial flow centrifugal pumps, if allowed by their characteristics.
Resumo:
Die vorliegende Arbeit beschäftigt sich mit den Einflüssen visuell wahrgenommener Bewegungsmerkmale auf die Handlungssteuerung eines Beobachters. Im speziellen geht es darum, wie die Bewegungsrichtung und die Bewegungsgeschwindigkeit als aufgabenirrelevante Reize die Ausführung von motorischen Reaktionen auf Farbreize beeinflussen und dabei schnellere bzw. verzögerte Reaktionszeiten bewirken. Bisherige Studien dazu waren auf lineare Bewegungen (von rechts nach links und umgekehrt) und sehr einfache Reizumgebungen (Bewegungen einfacher geometrischer Symbole, Punktwolken, Lichtpunktläufer etc.) begrenzt (z.B. Ehrenstein, 1994; Bosbach, 2004, Wittfoth, Buck, Fahle & Herrmann, 2006). In der vorliegenden Dissertation wurde die Gültigkeit dieser Befunde für Dreh- und Tiefenbewegungen sowie komplexe Bewegungsformen (menschliche Bewegungsabläufe im Sport) erweitert, theoretisch aufgearbeitet sowie in einer Serie von sechs Reaktionszeitexperimenten mittels Simon-Paradigma empirisch überprüft. Allen Experimenten war gemeinsam, dass Versuchspersonen an einem Computermonitor auf einen Farbwechsel innerhalb des dynamischen visuellen Reizes durch einen Tastendruck (links, rechts, proximal oder distal positionierte Taste) reagieren sollten, wobei die Geschwindigkeit und die Richtung der Bewegungen für die Reaktionen irrelevant waren. Zum Einfluss von Drehbewegungen bei geometrischen Symbolen (Exp. 1 und 1a) sowie bei menschlichen Drehbewegungen (Exp. 2) zeigen die Ergebnisse, dass Probanden signifikant schneller reagieren, wenn die Richtungsinformationen einer Drehbewegung kompatibel zu den räumlichen Merkmalen der geforderten Tastenreaktion sind. Der Komplexitätsgrad des visuellen Ereignisses spielt dabei keine Rolle. Für die kognitive Verarbeitung des Bewegungsreizes stellt nicht der Drehsinn, sondern die relative Bewegungsrichtung oberhalb und unterhalb der Drehachse das entscheidende räumliche Kriterium dar. Zum Einfluss räumlicher Tiefenbewegungen einer Kugel (Exp. 3) und einer gehenden Person (Exp. 4) belegen unsere Befunde, dass Probanden signifikant schneller reagieren, wenn sich der Reiz auf den Beobachter zu bewegt und ein proximaler gegenüber einem distalen Tastendruck gefordert ist sowie umgekehrt. Auch hier spielt der Komplexitätsgrad des visuellen Ereignisses keine Rolle. In beiden Experimenten führt die Wahrnehmung der Bewegungsrichtung zu einer Handlungsinduktion, die im kompatiblen Fall eine schnelle und im inkompatiblen Fall eine verzögerte Handlungsausführung bewirkt. In den Experimenten 5 und 6 wurden die Einflüsse von wahrgenommenen menschlichen Laufbewegungen (freies Laufen vs. Laufbandlaufen) untersucht, die mit und ohne eine Positionsveränderung erfolgten. Dabei zeigte sich, dass unabhängig von der Positionsveränderung die Laufgeschwindigkeit zu keiner Modulation des richtungsbasierten Simon Effekts führt. Zusammenfassend lassen sich die Studienergebnisse gut in effektbasierte Konzepte zur Handlungssteuerung (z.B. die Theorie der Ereigniskodierung von Hommel et al., 2001) einordnen. Weitere Untersuchungen sind nötig, um diese Ergebnisse auf großmotorische Reaktionen und Displays, die stärker an visuell wahrnehmbaren Ereignissen des Sports angelehnt sind, zu übertragen.
Más allá de la infraestructura: el impacto de las bibliotecas públicas en la calidad de la educación
Resumo:
La literatura sobre la calidad de la educación ha prestado poca atención al papel que tienen las bibliotecas públicas dentro de los determinantes del desempeño educativo. Las bibliotecas públicas son activos externos al colegio y al hogar del estudiante, pero hacen parte del entorno social que les rodea. La puesta en marcha a finales de 2001 de tres bibliotecas de gran tamaño en Bogotá, conocidas como megabibliotecas, nos permite analizar el impacto de estas iniciativas sobre la calidad de la educación en los colegios aledaños. Dicho impacto se daría a través de mecanismos adicionales a la simple reducción de costos al acceso a la información: las bibliotecas renovaron el espacio público mediante la generación de espacios agradables y amigables hacia la educación, además ofrecen regularmente actividades lúdicas dirigidas a las habitantes del sector. Aprovechando la distancia del plantel educativo a la biblioteca como una aproximación al costo de acceso a la misma, utilizando para ello Diferencia en Diferencias junto a la descomposición Blinder Oaxaca. Encontramos que las mismas parecen no tener un impacto significativo sobre el desempeño académico general en los exámenes oficiales SABER 11 durante los años posteriores a su implementación. Se recomienda analizar programas específicos que aprovechen las bibliotecas para actividades escolares y otras posibles variables de impacto como actitudes hacia el estudio y aspiraciones a la educación superior.
Resumo:
3D video-fluoroscopy is an accurate but cumbersome technique to estimate natural or prosthetic human joint kinematics. This dissertation proposes innovative methodologies to improve the 3D fluoroscopic analysis reliability and usability. Being based on direct radiographic imaging of the joint, and avoiding soft tissue artefact that limits the accuracy of skin marker based techniques, the fluoroscopic analysis has a potential accuracy of the order of mm/deg or better. It can provide fundamental informations for clinical and methodological applications, but, notwithstanding the number of methodological protocols proposed in the literature, time consuming user interaction is exploited to obtain consistent results. The user-dependency prevented a reliable quantification of the actual accuracy and precision of the methods, and, consequently, slowed down the translation to the clinical practice. The objective of the present work was to speed up this process introducing methodological improvements in the analysis. In the thesis, the fluoroscopic analysis was characterized in depth, in order to evaluate its pros and cons, and to provide reliable solutions to overcome its limitations. To this aim, an analytical approach was followed. The major sources of error were isolated with in-silico preliminary studies as: (a) geometric distortion and calibration errors, (b) 2D images and 3D models resolutions, (c) incorrect contour extraction, (d) bone model symmetries, (e) optimization algorithm limitations, (f) user errors. The effect of each criticality was quantified, and verified with an in-vivo preliminary study on the elbow joint. The dominant source of error was identified in the limited extent of the convergence domain for the local optimization algorithms, which forced the user to manually specify the starting pose for the estimating process. To solve this problem, two different approaches were followed: to increase the optimal pose convergence basin, the local approach used sequential alignments of the 6 degrees of freedom in order of sensitivity, or a geometrical feature-based estimation of the initial conditions for the optimization; the global approach used an unsupervised memetic algorithm to optimally explore the search domain. The performances of the technique were evaluated with a series of in-silico studies and validated in-vitro with a phantom based comparison with a radiostereometric gold-standard. The accuracy of the method is joint-dependent, and for the intact knee joint, the new unsupervised algorithm guaranteed a maximum error lower than 0.5 mm for in-plane translations, 10 mm for out-of-plane translation, and of 3 deg for rotations in a mono-planar setup; and lower than 0.5 mm for translations and 1 deg for rotations in a bi-planar setups. The bi-planar setup is best suited when accurate results are needed, such as for methodological research studies. The mono-planar analysis may be enough for clinical application when the analysis time and cost may be an issue. A further reduction of the user interaction was obtained for prosthetic joints kinematics. A mixed region-growing and level-set segmentation method was proposed and halved the analysis time, delegating the computational burden to the machine. In-silico and in-vivo studies demonstrated that the reliability of the new semiautomatic method was comparable to a user defined manual gold-standard. The improved fluoroscopic analysis was finally applied to a first in-vivo methodological study on the foot kinematics. Preliminary evaluations showed that the presented methodology represents a feasible gold-standard for the validation of skin marker based foot kinematics protocols.
Resumo:
BACKGROUND: Knowledge of the number of recent HIV infections is important for epidemiologic surveillance. Over the past decade approaches have been developed to estimate this number by testing HIV-seropositive specimens with assays that discriminate the lower concentration and avidity of HIV antibodies in early infection. We have investigated whether this "recency" information can also be gained from an HIV confirmatory assay. METHODS AND FINDINGS: The ability of a line immunoassay (INNO-LIA HIV I/II Score, Innogenetics) to distinguish recent from older HIV-1 infection was evaluated in comparison with the Calypte HIV-1 BED Incidence enzyme immunoassay (BED-EIA). Both tests were conducted prospectively in all HIV infections newly diagnosed in Switzerland from July 2005 to June 2006. Clinical and laboratory information indicative of recent or older infection was obtained from physicians at the time of HIV diagnosis and used as the reference standard. BED-EIA and various recency algorithms utilizing the antibody reaction to INNO-LIA's five HIV-1 antigen bands were evaluated by logistic regression analysis. A total of 765 HIV-1 infections, 748 (97.8%) with complete test results, were newly diagnosed during the study. A negative or indeterminate HIV antibody assay at diagnosis, symptoms of primary HIV infection, or a negative HIV test during the past 12 mo classified 195 infections (26.1%) as recent (< or = 12 mo). Symptoms of CDC stages B or C classified 161 infections as older (21.5%), and 392 patients with no symptoms remained unclassified. BED-EIA ruled 65% of the 195 recent infections as recent and 80% of the 161 older infections as older. Two INNO-LIA algorithms showed 50% and 40% sensitivity combined with 95% and 99% specificity, respectively. Estimation of recent infection in the entire study population, based on actual results of the three tests and adjusted for a test's sensitivity and specificity, yielded 37% for BED-EIA compared to 35% and 33% for the two INNO-LIA algorithms. Window-based estimation with BED-EIA yielded 41% (95% confidence interval 36%-46%). CONCLUSIONS: Recency information can be extracted from INNO-LIA-based confirmatory testing at no additional costs. This method should improve epidemiologic surveillance in countries that routinely use INNO-LIA for HIV confirmation.