186 resultados para MOO


Relevância:

20.00% 20.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes an interactive installation work set in a large dome space. The installation is an audio and physical re-rendition of an interactive writing work. In the original work, the user interacted via keyboard and screen while online. This rendition of the work retains the online interaction, but also places the interaction within a physical space, where the main 'conversation' takes place by the participant-audience speaking through microphones and listening through headphones. The work now also includes voice and SMS input, using speech-to-text and text-to-speech conversion technologies, and audio and displayed text for output. These additions allow the participant-audience to co-author the work while they participate in audible conversation with keyword-triggering characters (bots). Communication in the space can be person-to-computer via microphone, keyboard, and phone; person-to-person via machine and within the physical space; computer-to- computer; and computer-to-person via audio and projected text.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a nanoscale synthesis technique using nanosecond-duration plasma discharges. Voltage pulses 12.5 kV in amplitude and 40 ns in duration were applied repetitively at 30 kHz across molybdenum electrodes in open ambient air, generating a nanosecond spark discharge that synthesized well-defined MoO 3 nanoscale architectures (i.e. flakes, dots, walls, porous networks) upon polyamide and copper substrates. No nitrides were formed. The energy cost was as low as 75 eV per atom incorporated into a nanostructure, suggesting a dramatic reduction compared to other techniques using atmospheric pressure plasmas. These findings show that highly efficient synthesis at atmospheric pressure without catalysts or external substrate heating can be achieved in a simple fashion using nanosecond discharges.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Porous high surface area thin films of nanosheet-shaped monoclinic MoO 3 were deposited onto platinized Si substrates using patch antenna-based atmospheric microplasma processing. The films were characterized by high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM) and electrochemical analysis. The electrochemical analysis shows original redox peaks and high charge capacity, and also indicates a reversible electrochemical behaviour particularly beneficial for applications in Li-ion batteries. SEM shows that the films are highly porous and consist of nanosheets 50-100 nm thick with surface dimensions in the micrometre range. HRTEM reveals that the MoO3 nanosheets consist of the monoclinic beta phase of MoO3. These intricate nanoarchitectures made of monoclinic MoO3 nanosheets have not been studied previously in the context of applications in Li-ion batteries and show superior structural and morphological features that enable effective insertion of Li ions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hospitals are critical elements of health care systems and analysing their capacity to do work is a very important topic. To perform a system wide analysis of public hospital resources and capacity, a multi-objective optimization (MOO) approach has been proposed. This approach identifies the theoretical capacity of the entire hospital and facilitates a sensitivity analysis, for example of the patient case mix. It is necessary because the competition for hospital resources, for example between different entities, is highly influential on what work can be done. The MOO approach has been extensively tested on a real life case study and significant worth is shown. In this MOO approach, the epsilon constraint method has been utilized. However, for solving real life applications, with a large number of competing objectives, it was necessary to devise new and improved algorithms. In addition, to identify the best solution, a separable programming approach was developed. Multiple optimal solutions are also obtained via the iterative refinement and re-solution of the model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Efficiency of organic photovoltaic cells based on organic electron donor/organic electron acceptor junctions can be strongly improved when the transparent conductive Anode is coated with a Buffer Layer (ABL). Here, the effects of a metal (gold) or oxide (molybdenum oxide) ABL are reported, as a function of the Highest Occupied Molecular Orbital (HOMO) of different electron donors. The results indicate that a good matching between the work function of the anode and the highest occupied molecular orbital of the donor material is the major factor limiting the hole transfer efficiency. Indeed, gold is efficient as ABL only when the HOMO of the organic donor is close to its work function Phi(Au). Therefore we show that the MoO(3) oxide has a wider field of application as ABL than gold. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim