979 resultados para MOLECULAR ADSORPTION
Resumo:
This work is divided into two distinct parts. The first part consists of the study of the metal organic framework UiO-66Zr, where the aim was to determine the force field that best describes the adsorption equilibrium properties of two different gases, methane and carbon dioxide. The other part of the work focuses on the study of the single wall carbon nanotube topology for ethane adsorption; the aim was to simplify as much as possible the solid-fluid force field model to increase the computational efficiency of the Monte Carlo simulations. The choice of both adsorbents relies on their potential use in adsorption processes, such as the capture and storage of carbon dioxide, natural gas storage, separation of components of biogas, and olefin/paraffin separations. The adsorption studies on the two porous materials were performed by molecular simulation using the grand canonical Monte Carlo (μ,V,T) method, over the temperature range of 298-343 K and pressure range 0.06-70 bar. The calibration curves of pressure and density as a function of chemical potential and temperature for the three adsorbates under study, were obtained Monte Carlo simulation in the canonical ensemble (N,V,T); polynomial fit and interpolation of the obtained data allowed to determine the pressure and gas density at any chemical potential. The adsorption equilibria of methane and carbon dioxide in UiO-66Zr were simulated and compared with the experimental data obtained by Jasmina H. Cavka et al. The results show that the best force field for both gases is a chargeless united-atom force field based on the TraPPE model. Using this validated force field it was possible to estimate the isosteric heats of adsorption and the Henry constants. In the Grand-Canonical Monte Carlo simulations of carbon nanotubes, we conclude that the fastest type of run is obtained with a force field that approximates the nanotube as a smooth cylinder; this approximation gives execution times that are 1.6 times faster than the typical atomistic runs.
Resumo:
Nitrogen adsorption on carbon nanotubes is wide- ly studied because nitrogen adsorption isotherm measurement is a standard method applied for porosity characterization. A further reason is that carbon nanotubes are potential adsorbents for separation of nitrogen from oxygen in air. The study presented here describes the results of GCMC simulations of nitrogen (three site model) adsorption on single and multi walled closed nanotubes. The results obtained are described by a new adsorption isotherm model proposed in this study. The model can be treated as the tube analogue of the GAB isotherm taking into account the lateral adsorbate-adsorbate interactions. We show that the model describes the simulated data satisfactorily. Next this new approach is applied for a description of experimental data measured on different commercially available (and characterized using HRTEM) carbon nanotubes. We show that generally a quite good fit is observed and therefore it is suggested that the observed mechanism of adsorption in the studied materials is mainly determined by adsorption on tubes separated at large distances, so the tubes behave almost independently.
Resumo:
MD simulation studies showing the influence of porosity and carbon surface oxidation on phenol adsorption from aqueous solutions on carbons are reported. Based on a realistic model of activated carbon, three carbon structures with gradually changed microporosity were created. Next, a different number of surface oxygen groups was introduced. The pores with diameters around 0.6 nm are optimal for phenol adsorption and after the introduction of surface oxygen functionalities, adsorption of phenol decreases (in accordance with experimental data) for all studied models. This decrease is caused by a pore blocking effect due to the saturation of surface oxygen groups by highly hydrogen-bounded water molecules.
Resumo:
Tetrafluoromethane, CF4, is powerful greenhouse gas, and the possibility of storing it in microporous carbon has been widely studied. In this paper we show, for the first time, that the results of molecular simulations can be very helpful in the study of CF4 adsorption. Moreover, experimental data fit to the results collected from simulations. We explain the meaning of the empirical parameters of the supercritical Dubinin–Astakhov model proposed by Ozawa and finally the meaning of the parameter k of the empirical relation proposed by Amankwah and Schwarz.
Resumo:
L’azoto è uno dei prodotti principali dell’industria chimica, utilizzato principalmente per assicurare un sicuro stoccaggio di composti infiammabili. Generatori con sistemi PSA sono spesso più economici della tradizionale distillazione criogenica. I processi PSA utilizzano una colonna a letto fisso, riempita con materiale adsorbente, che adsorbe selettivamente un componente da una miscela gassosa. L’ossigeno diffonde molto più velocemente dell'azoto nei pori di setacci molecolari carboniosi. Oltre ad un ottimo materiale adsorbente, anche il design è fondamentale per la performance di un processo PSA. La fase di adsorbimento è seguita da una fase di desorbimento. Il materiale adsorbente può essere quindi riutilizzato nel ciclo seguente. L’assenza di un simulatore di processo ha reso necessario l’uso di dati sperimentali per sviluppare nuovi processi. Un tale approccio è molto costoso e lungo. Una modellazione e simulazione matematica, che consideri tutti i fenomeni di trasporto, è richiesta per una migliore comprensione dell'adsorbente sia per l'ottimizzazione del processo. La dinamica della colonna richiede la soluzione di insiemi di PDE distribuite nel tempo e nello spazio. Questo lavoro è stato svolto presso l'Università di Scienze Applicate - Münster, Germania. Argomento di questa tesi è la modellazione e simulazione di un impianto PSA per la produzione di azoto con il simulatore di processo Aspen Adsorption con l’obiettivo di permettere in futuro ottimizzazioni di processo affidabili, attendibili ed economiche basate su computazioni numeriche. E' discussa l’ottimizzazione di parametri, dati cinetici, termodinamici e di equilibrio. Il modello è affidabile, rigoroso e risponde adeguatamente a diverse condizioni al contorno. Tuttavia non è ancora pienamente soddisfacente poiché manca una rappresentazione adeguata della cinetica ovvero dei fenomeni di trasporto di materia. La messa a punto del software permetterà in futuro di indagare velocemente nuove possibilità di operazione.
Resumo:
The microstructure of a carbon molecular sieve membrane (CMSM) is characterized using adsorption equilibrium information. The pore size distributions of the CMSM derived from N-2 and CH4 adsorption isotherm are found to be consistent with each other and in agreement with the results of gas permeation experiments as well as the general characteristics of such molecular sieve materials. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a detailed analysis of adsorption of supercritical fluids on nonporous graphitized thermal carbon black. Two methods are employed in the analysis. One is the molecular layer structure theory (MLST), proposed recently by our group, and the other is the grand canonical Monte Carlo (GCMC) simulation. They were applied to describe the adsorption of argon, krypton, methane, ethylene, and sulfur hexafluoride on graphitized thermal carbon black. It was found that the MLST describes all the experimental data at various temperatures well. Results from GCMC simulations describe well the data at low pressure but show some deviations at higher pressures for all the adsorbates tested. The question of negative surface excess is also discussed in this paper.
Resumo:
Adsorption of pure nitrogen, argon, acetone, chloroform and acetone-chloroform mixture on graphitized thermal carbon black is considered at sub-critical conditions by means of molecular layer structure theory (MLST). In the present version of the MLST an adsorbed fluid is considered as a sequence of 2D molecular layers, whose Helmholtz free energies are obtained directly from the analysis of experimental adsorption isotherm of pure components. The interaction of the nearest layers is accounted for in the framework of mean field approximation. This approach allows quantitative correlating of experimental nitrogen and argon adsorption isotherm both in the monolayer region and in the range of multi-layer coverage up to 10 molecular layers. In the case of acetone and chloroform the approach also leads to excellent quantitative correlation of adsorption isotherms, while molecular approaches such as the non-local density functional theory (NLDFT) fail to describe those isotherms. We extend our new method to calculate the Helmholtz free energy of an adsorbed mixture using a simple mixing rule, and this allows us to predict mixture adsorption isotherms from pure component adsorption isotherms. The approach, which accounts for the difference in composition in different molecular layers, is tested against the experimental data of acetone-chloroform mixture (non-ideal mixture) adsorption on graphitized thermal carbon black at 50 degrees C. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
A new approach is developed to analyze the thermodynamic properties of a sub-critical fluid adsorbed in a slit pore of activated carbon. The approach is based on a representation that an adsorbed fluid forms an ordered structure close to a smoothed solid surface. This ordered structure is modelled as a collection of parallel molecular layers. Such a structure allows us to express the Helmholtz free energy of a molecular layer as the sum of the intrinsic Helmholtz free energy specific to that layer and the potential energy of interaction of that layer with all other layers and the solid surface. The intrinsic Helmholtz free energy of a molecular layer is a function (at given temperature) of its two-dimensional density and it can be readily obtained from bulk-phase properties, while the interlayer potential energy interaction is determined by using the 10-4 Lennard-Jones potential. The positions of all layers close to the graphite surface or in a slit pore are considered to correspond to the minimum of the potential energy of the system. This model has led to accurate predictions of nitrogen and argon adsorption on carbon black at their normal boiling points. In the case of adsorption in slit pores, local isotherms are determined from the minimization of the grand potential. The model provides a reasonable description of the 0-1 monolayer transition, phase transition and packing effect. The adsorption of nitrogen at 77.35 K and argon at 87.29 K on activated carbons is analyzed to illustrate the potential of this theory, and the derived pore-size distribution is compared favourably with that obtained by the Density Functional Theory (DFT). The model is less time-consuming than methods such as the DFT and Monte-Carlo simulation, and most importantly it can be readily extended to the adsorption of mixtures and capillary condensation phenomena.
Resumo:
Several procedures for calculating the heat of adsorption from Monte Carlo simulations for a heterogeneous adsorbent are presented. Simulations have been performed to generate isotherms for nitrogen at 77 K and methane at 273.15 K in graphitic slit pores of various widths. The procedures were then applied to calculate the heat of adsorption of an activated carbon with an arbitrary pore size distribution. The consistency of the different procedures shows them to be correct in calculating interaction energy contributions to the heat of adsorption. The currently favored procedure for this type of calculation, from the literature, is shown to be incorrect and in serious error when calculating the heat of adsorption of activated carbon.
Resumo:
As a basis for the commercial separation of normal paraffins a detailed study has been made of factors affecting the adsorption of binary liquid mixtures of high molecular weight normal paraffins (C12, C16, and C20) from isooctane on type 5A molecular sieves. The literature relating to molecular sieve properties and applications, and to liquid-phase adsorption of high molecular weight normal paraffin compounds by zeolites, was reviewed. Equilibrium isotherms were determined experimentally for the normal paraffins under investigation at temperatures of 303oK, 323oK and 343oK and showed a non-linear, favourable- type of isotherm. A higher equilibrium amount was adsorbed with lower molecular weight normal paraffins. An increase in adsorption temperature resulted in a decrease in the adsorption value. Kinetics of adsorption were investigated for the three normal paraffins at different temperatures. The effective diffusivity and the rate of adsorption of each normal paraffin increased with an increase in temperature in the range 303 to 343oK. The value of activation energy was between 2 and 4 kcal/mole. The dynamic properties of the three systems were investigated over a range of operating conditions (i.e. temperature, flow rate, feed concentration, and molecular sieve size in the range 0.032 x 10-3 to 2 x 10-3m) with a packed column. The heights of adsorption zones calculated by two independent equations (one based on a constant width, constant velocity and adsorption zone and the second on a solute material balance within the adsorption zone) agreed within 3% which confirmed the validity of using the mass transfer zone concept to provide a simple design procedure for the systems under study. The dynamic capacity of type 5A sieves for n-eicosane was lower than for n-hexadecane and n-dodecane corresponding to a lower equilibrium loading capacity and lower overall mass transfer coefficient. The values of individual external, internal, theoretical and experimental overall mass transfer coefficient were determined. The internal resistance was in all cases rate-controlling. A mathematical model for the prediction of dynamic breakthrough curves was developed analytically and solved from the equilibrium isotherm and the mass transfer rate equation. The experimental breakthrough curves were tested against both the proposed model and a graphical method developed by Treybal. The model produced the best fit with mean relative percent deviations of 26, 22, and 13% for the n-dodecane, n-hexadecane, and n-eicosane systems respectively.
Resumo:
The adsorption and diffusion of mixed hydrocarbon components in silicalite have been studied using molecular dynamic simulation methods. We have investigated the effect of molecular loadings and temperature on the diffusional behavior of both pure and mixed alkane components. For binary mixtures with components of similar sizes, molecular diffusional behavior in the channels was noticed to be reversed as loading is increased. This behavior was noticeably absent for components of different sizes in the mixture. Methane molecules in the methane/propane mixture have the highest diffusion coefficients across the entire loading range. Binary mixtures containing ethane molecules prove more difficult to separate compared to other binary components. In the ternary mixture, however, ethane molecules diffuse much faster at 400 K in the channel with a tendency to separate out quickly from other components. © 2005 Elsevier Inc. All rights reserved.
Resumo:
In recent years there has been growing interest in the use of dimethyl ether (DME) as an alternative fuel. In this study, the adsorption of DME on molecular sieves 4Å (Mol4A) and 5Å (Mol5A) has been experimentally investigated using the volumetric adsorption method. Data on the adsorption isotherms, heats of adsorption, and adsorption kinetic have been obtained and used to draw conclusions and compare the performance of the two adsorbents. Within the conditions considered, the adsorption capacity of Mol5A was found to be around eight times higher than the capacity of Mol4A. Low temperature adsorption and thermal pre-treatment of the adsorbents in vacuum were observed to be favourable for increased adsorption capacity. The adsorption isotherms for both adsorbent were fitted to the Freundlich model and the corresponding model parameters are proposed. The adsorption kinetic analysis suggest that the DME adsorption on Mol5A is controlled by intracrystalline diffusion resistance, while on Mol4A it is mainly controlled by surface layering resistance with the diffusion only taking place at the start of adsorption and for a very limited short time. The heats of adsorption were calculated by a calorimetric method based on direct temperature measurements inside the adsorption cell. Isosteric heats, calculated by the thermodynamic approach (Clasius-Clapeyron equation), have consistently shown lower values. The maximum heat of adsorption was found to be 25.9kJmol-1 and 20.1kJmol-1 on Mol4A and Mol5A, respectively; thus indicating a physisorption type of interactions. © 2014 Elsevier B.V.
Resumo:
The interactions of phenyldithioesters with gold nanoparticles (AuNPs) have been studied by monitoring changes in the surface plasmon resonance (SPR), depolarised light scattering, and surface enhanced Raman spectroscopy (SERS). Changes in the SPR indicated that an AuNP-phenyldithioester charge transfer complex forms in equilibrium with free AuNPs and phenyldithioester. Analysis of the Langmuir binding isotherms indicated that the equilibrium adsorption constant, Kads, was 2.3 ± 0.1 × 106 M−1, which corresponded to a free energy of adsorption of 36 ± 1 kJ mol−1. These values are comparable to those reported for interactions of aryl thiols with gold and are of a similar order of magnitude to moderate hydrogen bonding interactions. This has significant implications in the application of phenyldithioesters for the functionalization of AuNPs. The SERS results indicated that the phenyldithioesters interact with AuNPs through the C═S bond, and the molecules do not disassociate upon adsorption to the AuNPs. The SERS spectra are dominated by the portions of the molecule that dominate the charge transfer complex with the AuNPs. The significance of this in relation to the use of phenyldithioesters for molecular barcoding of nanoparticle assemblies is discussed.
Resumo:
Infrared spectroscopy has been used to study the adsorption of paranitrophenol on mono, di and tri alkyl surfactant intercalated montmorillonite. Organoclays were obtained by the cationic exchange of mono, di and tri alkyl chain surfactants for sodium ions [hexadecyltrimethylammonium bromide (HDTMAB), dimethyldioctadecylammonium bromide (DDOAB), methyltrioctadecylammonium bromide (MTOAB)] in an aqueous solution with Na-montmorillonite. Upon formation of the organoclay, the properties change from strongly hydrophilic to strongly hydrophobic. This change in surface properties is observed by a decrease in intensity of the OH stretching vibrations assigned to water in the cation hydration sphere of the montmorillonite. As the cation is replaced by the surfactant molecules the paranitrophenol replaces the surfactant molecules in the clay interlayer. Bands attributed to CH stretching and bending vibrations change for the surfactant intercalated montmorillonite. Strong changes occur in the HCH deformation modes of the methyl groups of the surfactant. These changes are attributed to the methyl groups locking into the siloxane surface of the montmorillonite. Such a concept is supported by changes in the SiO stretching bands of the montmorillonite siloxane surface. This study demonstrates that paranitrophenol will penetrate into the untreated clay interlayer and replace the intercalated surfactant in surfactant modified clay, resulting in the change of the arrangement of the intercalated surfactant.